Skip to content

Building your first post processing plugin

First we create the folders to store our custom plugin in:

mkdir cvedia-rt/src/Plugins/HelloWorld
mkdir cvedia-rt/src/Plugins/HelloWorld/src

Now create a file called helloworld.cpp in cvedia-rt/src/Plugins/HelloWorld/src/ with the following contents:

#include "api/inference.h"
#include "cvalue.h"
#include "plog/Init.h"

using namespace cvedia::rt;
using namespace cvedia::rt::internal;

extern "C" EXPORT void registerHandler();
extern "C" EXPORT void logInit(plog::Severity severity, plog::IAppender * appender);

void logInit(plog::Severity severity, plog::IAppender * appender)
    plog::init(severity, appender); // Initialize the shared library logger.

* Return a simple key/value for testing
static expected<pCValue> helloworld(InferenceContext& /*ctx*/, std::vector<xt::xarray<float>> & /*output*/, CValue */*modelConf*/) {
    cvec cv;
    cmap cm;

    cm["data"] = VAL("Hello world");

    return VAL(cv);

void registerHandler() {
    api::inference::registerPostprocessHandler("helloworld", helloworld);

Next we create a CMakeLists.txt in cvedia-rt/src/Plugins/HelloWorld/ and fill it with the following:

message("Configuring HelloWorld plugin")

# Add source to this project's executable.
add_library (HelloWorld MODULE "src/helloworld.cpp")

                        PREFIX ""
                        LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/Plugins/$<0:>")


target_link_libraries (HelloWorld PUBLIC RTCORE)


Finally we modify cvedia-rt/src/Plugins/CMakeLists.txt so we can add our custom plugin to the end of the build list:

# SPDX-FileCopyrightText: 2022 CVEDIA LTD
# SPDX-License-Identifier: Apache-2.0




endif ()

# My hello world plugin

Now we can run ./ again and we should have at least the following output files:

aj@anbessa:/opt/CVEDIA-RT-SDK# ls -l out/linux64-RelWithDebInfo/redist/Plugins/
total 644
-rw-r--r-- 1 aj user  18696 dec  7 22:08
-rw-r--r-- 1 aj user 101472 dec  7 22:08
-rw-r--r-- 1 aj user  76584 dec  7 22:08
-rw-r--r-- 1 aj user 303232 dec  7 22:08
-rw-r--r-- 1 aj user 171648 dec  7 22:08

Installing your plugin

For this step I'm going to assume you installed the Linux .deb package as the Docker install would require additional steps I won't cover here.

Copy your to /opt/cvedia-rt/Plugins/. To confirm it's loaded by the runtime run:

aj@anbessa:/opt# listnndevices -v | grep hello
2022-12-07 15:03:30.277 INFO  [inferenceregistry.cpp@82] [Global] Registering postprocess handler helloworld

Getting output from your plugin

The data your plugin returns can be retrieved in many ways (C++ API, Lua, CLI). Here I'll concentrate on using a CLI utility just to confirm everything works.

Because our plugin doesn't actually do anything useful at this point we can use any AI model just for testing purpose. If you have your own model you can use that, if not, use the following commands to install one of CVEDIA's default models:

modelforge -u openvino.CPU://pva_det/rgb_gs/nano_160x160/220421b -d
This downloads the model to /opt/cvedia-rt/assets/models/pva_det/.

Next we have to replace the default post-processing plugin for this model with our helloworld.

Open /opt/cvedia-rt/assets/models/pva_det/pva_det_rgb_gs_nano_160x160_220421b.xml.json and change postprocess from yolox to helloworld.

When we runinference on any image or video now you should see the following output:

runinference -m openvino.CPU://pva_det/rgb_gs/nano_160x160/220421b -i <image.jpg>

[{"data":"Hello world","source":"<buffer>"}]

Returning actual data

Transforming tensors into usable data can be quite challenging at times. We rely heavily on xtensor as it provides an interface that's highly similar to numpy, making it easier to port over Python implementations.

Your next step would be to go over the example plugins in the cvedia-rt/src/Plugins/ folder. We've bundled some of the different detector architectures as well as a classifier implementation.

For any questions on the data formats or conventions feel free to hit us up on Discord:

Performance of your plugin

As optimizations matter greatly when developing for Edge devices it's important to keep an eye on the performance of your plugin. Using our model benchmark you can see how much time is spent in your plugin and you can even compare that to other implementations.

This is how you would run a benchmark:

aj@anbessa:/opt/CVEDIA-RT-SDK# benchmark -u openvino.CPU://pva_det/rgb_gs/nano_160x160/220421b -i 3 -n 10000
Running 1 thread(s)
Loading 1 backend(s)
[1/1] openvino.CPU://pva_det/rgb_gs/nano_160x160/220421b
Shape: 1x1x160x160
Number of channels in this model might not be supported
           Time     Preprocess      Inference      Inference    Postprocess
                      cpu time        latency     throughput       cpu time
    -----------    -----------    -----------    -----------    -----------
       00:00:03    0.0771644ms      2.74361ms      348.767/s    0.0145339ms
       00:00:06    0.0756386ms      2.74811ms       348.55/s    0.0146319ms
       00:00:09      0.06791ms      2.47256ms      387.762/s    0.0118216ms
       00:00:12    0.0686548ms      2.47962ms      386.538/s     0.012338ms

The last column shows the performance of the Hello World plugin. You can run benchmark with --help to see many of the other options available.