Skip to content

blaize

Namespaces

Name
blaize::isp
blaize::onnx
blaize::vx

Classes

Name
class blaize::ConfigurationValue
struct blaize::float32x4
struct blaize::int16x4
struct blaize::int32x4
struct blaize::int8x4
struct blaize::uint16x4
struct blaize::uint32x4
struct blaize::uint8x4

Types

Name
enum @909
enum OnnxStatus
enum class TensorType
enum class ShiftDirection
enum class InterpolationMode
enum class CoordinateTransformationMode
enum class NearestMode
enum class DepthToSpaceMode
enum class RoiAlignMode
using int8_t int8
using uint8_t uint8
using int16_t int16
using uint16_t uint16
using int32_t int32
using uint32_t uint32
using int64_t int64
using uint64_t uint64
using float float32
using double float64
using vx_node Node
using vx_graph Graph
using vx_kernel Kernel
using vx_parameter Parameter
using vx_context Context
using vx_tensor Tensor
using vx_scalar Scalar
using vx_image Image
using vx_status Status
using vx_reference Reference
using vx_tensor_view TensorView
using std::map< std::string, ConfigurationValue > ConfigurationMapping

Functions

Name
Context CreateContext()
Creates a context.
Status SetConfiguration(Context c, std::string name, ConfigurationValue value)
Change configuration item.
ConfigurationMapping GetConfiguration(Context c)
Get current configuration state.
Graph CreateGraph(Context c)
Status ProcessGraph(Graph g)
Status ReleaseGraph(Graph * g)
Status ReleaseContext(Context * c)
Status GetStatus(Reference obj)
Status AddParameterToGraph(Graph g, Parameter p)
Status SetGraphParameterByIndex(Graph g, uint32 index, Reference obj)
Parameter GetParameterByIndex(Node n, uint32 index)
Status ReleaseParameter(Parameter * p)
Status ReleaseNode(Node * n)
Status ReleaseTensor(Tensor * t)
Status SetReferenceName(Reference obj, const char * name)
Tensor CreateTensorFromRawFile(Context c, const char * filename, int32 num_of_dims, uint32x4 sizes, TensorType data_format)
Tensor CreateTensor(Context c, int32 num_of_dims, uint32x4 sizes, TensorType data_format)
Tensor CreateVirtualTensor(Graph g, int32 num_of_dims, uint32x4 sizes, TensorType data_format)
Tensor CreateWeightsTensorFromRawFile(Context c, const char * filename, uint32x4 sizes, TensorType data_format)
Status SaveTensorToRawFile(Tensor t, const char * filename)
TensorView CreateTensorView(Context c, uint32x4 start, uint32x4 end, int32 num_of_dims)
Tensor CreateTensorFromView(Tensor t, TensorView view)
Node AbsNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
AbsNode operator performs element-wise Absolute operation.
Node AddNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node AveragePoolNode(Graph graph, Tensor a, Tensor b, uint8 ceil_mode =0, uint8x4 kernel_shape ={1, 1, 0, 0}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1, 1, 1}, uint8 count_include_pad =0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
AveragePool operator performs element-wise average pooling operation on subset of tensor.
Node BatchNormalizationNode(Graph graph, Tensor a, Tensor b, Tensor weight, Tensor bias, Tensor weight_scale, float32 a_scale =0.0f, int32 a_zero_point =0, float32 bias_scale =0.0f, int32 bias_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, Tensor var =nullptr, Tensor mean =nullptr)
BatchNorm operator performs element-wise max operation on subset of tensor.
Node BitShiftNode(Graph g, Tensor a, Tensor b, Tensor c, ShiftDirection dir, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Bitwise shift operator performs element-wise operation.
Node EluNode(Graph graph, Tensor a, Tensor b, float32 alpha =1.0f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Elu operator performs element-wise function on input tensor.
Node GemmNode(Graph graph, Tensor x, Tensor y, Tensor w, Tensor b =nullptr, float32 alpha =1.0f, float32 beta =1.0f, int32 transX =0, int32 transY =0, float32 x_scale =0.0f, int32 x_zero_point =0, float32 y_scale =0.0f, int32 y_zero_point =0, float32 w_scale =0.0f, int32 w_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, uint8 shift_flag =1, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node GlobalAveragePoolNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
GlobalAveragePool operator performs global average pooling operation on subset of tensor.
Node LeakyReluNode(Graph graph, Tensor a, Tensor b, float32 alpha =1.0f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 alpha_scale =0.0f, int32 alpha_zero_point =0)
Node LpNormalizationNode(Graph g, Tensor a, Tensor b, int32 p =2, int32 axis =-1, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, Tensor weight =nullptr, float32 weight_scale =0.0f, int32 weight_zero_point =0)
Node LRNNode(Graph g, Tensor a, Tensor b, uint32 size, float32 alpha =0.0001, float32 beta =0.75, float32 bias =1.0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node MatMulNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0)
Node MaxPoolNode(Graph graph, Tensor a, Tensor b, uint8 ceil_mode =0, uint8x4 dilations ={1, 1, 1, 1}, uint8x4 kernel_shape ={1, 1, 0, 0}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1, 1, 1}, uint8 storage_order =0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
MaxPool operator performs element-wise max operation on subset of tensor.
Node MulNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node QLinearConvNode(Graph graph, Tensor x, Tensor y, Tensor w, Tensor b =nullptr, uint8x4 dilations ={1, 1, 1, 1}, uint32 group =1, uint8x4 kernel_shape ={0, 0, 0, 0}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1, 1}, float32 x_scale =0.0f, int32 x_zero_point =0, float32 y_scale =0.0f, int32 y_zero_point =0, float32 w_scale =0.0f, int32 w_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, uint8 shift_flag =1)
Node QLinearConvNode2(Graph graph, Tensor x, Tensor y, Tensor w, Tensor b =nullptr, uint8x4 dilations ={1, 1, 1, 1}, uint32 group =1, uint8x4 kernel_shape ={0, 0, 0, 0}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1, 1}, float32 x_scale =0.0f, int32 x_zero_point =0, Tensor y_scale =nullptr, int32 y_zero_point =0, float32 w_scale =0.0f, int32 w_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, uint8 shift_flag =1)
Node ConvTransposeNode(Graph graph, Tensor x, Tensor y, Tensor w, Tensor b =nullptr, uint8x4 dilations ={1, 1, 1, 1}, uint32 group =1, uint8x4 kernel_shape ={0, 0, 0, 0}, uint8x4 output_padding ={0, 0, 0, 0}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1, 1}, float32 x_scale =0.0f, int32 x_zero_point =0, float32 y_scale =0.0f, int32 y_zero_point =0, float32 w_scale =0.0f, int32 w_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, uint8 shift_flag =1)
Node ReluNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node ResizeNode(Graph graph, Tensor a, Tensor b, float32x4 scales, Tensor roi, InterpolationMode mode =InterpolationMode::NEAREST, CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL, NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR, int32 exclude_outside =0, float32 extrapolation_value =0.0f, float32 cubic_coeff_a =-0.75f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Onnx Resize-11 supported.
Node ReshapeNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node SoftmaxNode(Graph graph, Tensor a, Tensor b, int32 axis =-1, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node SpaceToDepthNode(Graph graph, Tensor a, Tensor b, int32 blocksize, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node TransposeNode(Graph graph, Tensor input, Tensor out, uint8x4 perm ={0, 1, 2, 3}, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node SeluNode(Graph graph, Tensor a, Tensor b, float32 alpha =1.67326f, float32 gamma =1.0507f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node HardSigmoidNode(Graph graph, Tensor a, Tensor b, float32 alpha =0.2f, float32 beta =0.5f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node AndNode(Graph graph, Tensor in0, Tensor in1, Tensor out, float32 in0_scale =0.0f, int32 in0_zero_point =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
AndNode operator performs element-wise Absolute operation.
Node SubNode(Graph graph, Tensor in0, Tensor in1, Tensor out, float32 in0_scale =0.0f, int32 in0_zero_point =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
SubNode operator performs element-wise Absolute operation.
Node Sum3Node(Graph graph, Tensor in0, Tensor in1, Tensor in2, Tensor out, float32 in0_scale =0.0f, int32 in0_zero_point =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 in2_scale =0.0f, int32 in2_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
SumNode(3-input) operator performs element-wise Absolute operation.
Node Sum4Node(Graph graph, Tensor in0, Tensor in1, Tensor in2, Tensor in3, Tensor out, float32 in0_scale =0.0f, int32 in0_zero_point =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 in2_scale =0.0f, int32 in2_zero_point =0, float32 in3_scale =0.0f, int32 in3_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
SumNode(3-input) operator performs element-wise Absolute operation.
Node TanhNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
TanhNode operator performs element-wise Absolute operation.
Node DepthToSpaceNode(Graph graph, Tensor a, Tensor b, int32 blocksize, DepthToSpaceMode mode =DepthToSpaceMode::DCR, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
DepthToSpace operator performs bitwise DepthToSpace conversion.
Node SliceNode(Graph graph, Tensor input, Tensor output, int32x4 starts, int32x4 ends, int32x4 axes, int32x4 steps ={1, 1, 1, 1}, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
Slice operator performs bitwise slice operation.
Node Split2Node(Graph graph, Tensor input, Tensor output0, Tensor output1, int32x4 split ={0, 0, 0, 0}, int32 axis =0, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output0_scale =0.0f, int32 output0_zero_point =0, float32 output1_scale =0.0f, int32 output1_zero_point =0)
Split operator performs bitwise split operation.
Node Split3Node(Graph graph, Tensor input, Tensor output0, Tensor output1, Tensor output2, int32x4 split ={0, 0, 0, 0}, int32 axis =0, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output0_scale =0.0f, int32 output0_zero_point =0, float32 output1_scale =0.0f, int32 output1_zero_point =0, float32 output2_scale =0.0f, int32 output2_zero_point =0)
Split operator performs bitwise split operation.
Node Split4Node(Graph graph, Tensor input, Tensor output0, Tensor output1, Tensor output2, Tensor output3, int32x4 split ={0, 0, 0, 0}, int32 axis =0, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output0_scale =0.0f, int32 output0_zero_point =0, float32 output1_scale =0.0f, int32 output1_zero_point =0, float32 output2_scale =0.0f, int32 output2_zero_point =0, float32 output3_scale =0.0f, int32 output3_zero_point =0)
Split operator performs bitwise split operation.
Node ReduceMaxNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceMax onnx Operator.
Node ReduceMinNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceMin onnx Operator.
Node ReduceMeanNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceMean onnx Operator.
Node ReduceSumNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceSum onnx Operator.
Node ClipNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 min =1.17549435e-38, float32 max =3.38953139e+38)
Clip onnx Operator.
Node Max2Node(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Max2 onnx Operator.
Node Max3Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Max3 onnx Operator.
Node Max4Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, Tensor e, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, float32 e_scale =0.0f, int32 e_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Max4 onnx Operator.
Node Mean2Node(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Mean2 onnx Operator.
Node Mean3Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Mean3 onnx Operator.
Node Mean4Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, Tensor e, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, float32 e_scale =0.0f, int32 e_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Mean4 onnx Operator.
Node LessNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node SigmoidNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node XorNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node ShrinkNode(Graph graph, Tensor a, Tensor b, float bias =0.0f, float lambd =0.5, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node OrNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node GreaterNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Node NotNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node NegNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node Min2Node(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Min2 onnx Operator.
Node Min3Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Min3 onnx Operator.
Node Min4Node(Graph graph, Tensor a, Tensor b, Tensor c, Tensor d, Tensor e, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, float32 d_scale =0.0f, int32 d_zero_point =0, float32 e_scale =0.0f, int32 e_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Min4 onnx Operator.
Node DivNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Div onnx Operator.
Node ThresholdedReluNode(Graph graph, Tensor a, Tensor b, float32 alpha =1.0f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
ThresholdedReluNode operator performs element-wise function on input tensor.
Node PReluNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
PRelu onnx Operator.
Node SqueezeNode(Graph graph, Tensor input, Tensor out, int8x4 axes ={4, 4, 4, 4}, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node UnsqueezeNode(Graph graph, Tensor input, Tensor out, int8x4 axes, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node GatherElementsNode(Graph graph, Tensor input, Tensor out, Tensor index, int32 axis =0, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, float32 index_scale =0.0f, int32 index_zero_point =0)
Node ReduceProdNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceProd onnx Operator.
Node ReduceSumSquareNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceSumSquare onnx Operator.
Node SoftsignNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
SoftSign onnx Operator.
Node EqualNode(Graph graph, Tensor in1, Tensor in2, Tensor out, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 in2_scale =0.0f, int32 in2_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Equal onnx Operator.
Node ModNode(Graph graph, Tensor in1, Tensor in2, Tensor out, int8 fmod =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 in2_scale =0.0f, int32 in2_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Mod onnx Operator.
Node IdentityNode(Graph graph, Tensor input, Tensor output, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
Identity onnx Operator.
Node ScatterElementsNode(Graph graph, Tensor data, Tensor update, Tensor out, Tensor indices, int axis =1, float32 data_scale =0.0f, int32 data_zero_point =0, float32 update_scale =0.0f, int32 update_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, float32 indices_scale =0.0f, int32 indices_zero_point =0)
ScatterElements onnx Operator.
Node SqrtNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Sqrt operator performs element-wise sqrt operation.
Node ReciprocalNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node SinNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node CosNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Node Sum2Node(Graph graph, Tensor in0, Tensor in1, Tensor out, float32 in0_scale =0.0f, int32 in0_zero_point =0, float32 in1_scale =0.0f, int32 in1_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
SumNode(2-input) operator performs element-wise Absolute operation.
Node HardmaxNode(Graph graph, Tensor a, Tensor b, int32 axis =1, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Hardmax onnx Operator.
Node ArgMaxNode(Graph graph, Tensor a, Tensor b, int32 axis =0, int32 keepdims =1, int32 select_last_index =0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Argmax onnx Operator.
Node ArgMinNode(Graph graph, Tensor a, Tensor b, int32 axis =0, int32 keepdims =1, int32 select_last_index =0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Argmin onnx Operator.
Node CoshNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
CoshNode operator performs element-wise Absolute operation.
Node AcoshNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
ACoshNode operator performs element-wise Absolute operation.
Node AcosNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
AcosNode operator performs element-wise Absolute operation.
Node AtanhNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
AtanhNode operator performs element-wise Absolute operation.
Node AtanNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
AtanNode operator performs element-wise Absolute operation.
Node AsinNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Asin onnx Operator.
Node AsinhNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Asinh onnx Operator.
Node SinhNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Sinh onnx Operator.
Node ExpNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Exp onnx Operator.
Node TanNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Tan onnx Operator.
Node PowNode(Graph graph, Tensor a, Tensor b, Tensor c, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 c_scale =0.0f, int32 c_zero_point =0, uint8x4 broadcast_axis ={0, 0, 0, 0})
Pow onnx Operator.
Node ExpandNode(Graph graph, Tensor input, Tensor out, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0)
Expand onnx Operator.
Node SoftplusNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
SoftplusNode operator performs element-wise Softplus operation.
Node ReduceLogSumNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceLogSum onnx Operator.
Node ReduceLogSumExpNode(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceLogSumExp onnx Operator.
Node ReduceL1Node(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceL1 onnx Operator.
Node ReduceL2Node(Graph graph, Tensor a, Tensor b, int8x4 axes, int32 keepdim =1, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
ReduceL2 onnx Operator.
Node LogNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
LogNode onnx Operator.
Node GlobalMaxPoolNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
GlobalMaxPool onnx Operator.
Node LpPoolNode(Graph graph, Tensor a, Tensor b, uint8x4 kernel_shape ={1, 1}, int p =2, uint8x4 pads ={0, 0}, uint8x4 strides ={1, 1}, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
LpPool onnx Operator.
Node GlobalLpPoolNode(Graph graph, Tensor a, Tensor b, int p =2, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
GlobalLpPool onnx Operator.
Node GatherNode(Graph graph, Tensor input, Tensor out, Tensor index, int32 axis =0, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, float32 index_scale =0.0f, int32 index_zero_point =0)
Node LogSoftmaxNode(Graph graph, Tensor a, Tensor b, int32 axis =-1, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
LogSoftmax onnx Operator.
Node MaxUnpoolNode(Graph graph, Tensor a, Tensor b, Tensor c, uint8x4 kernel_shape ={1, 1}, uint8x4 pads ={0, 0, 0, 0}, uint8x4 strides ={1, 1}, float32 a_scale =0, int32 a_zero_point =0, float32 c_scale =0, int32 c_zero_point =0)
MaxUnpool onnx Operator.
Node InstanceNormalizationNode(Graph graph, Tensor input, Tensor out, Tensor s, Tensor b, float epsilon =0.00001f, float32 input_scale =0.0f, int32 input_zero_point =0, float32 out_scale =0.0f, int32 out_zero_point =0, float32 s_scale =0.0f, int32 s_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
InstanceNormalization onnx Operator.
Node CumSumNode(Graph graph, Tensor a, Tensor b, int32 axis =0, int8 exclusive =0, int8 reverse =0, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
CumSum onnx Operator.
Node OneHotNode(Graph graph, Tensor a, Tensor b, int32 axis =-1, int32 depth =0, float32 off_value =0.0f, float32 on_value =0.0f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node ErfNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node GatherNDNode(Graph graph, Tensor a, Tensor b, Tensor indices, int32 batch_dim =0, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0, float32 indices_scale =0.0f, int32 indices_zero_point =0)
Gather onnx Operator.
Node ScatterNDNode(Graph graph, Tensor input, Tensor updates, Tensor out, Tensor indices, float32 input_scale =0.0f, int32 input_zero_point =0, float32 updates_scale =0.0f, int updates_zero_point =0, float32 out_scale =0.0f, int out_zero_point =0, float32 indices_scale =0.0f, int indices_zero_point =0)
Node SignNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
Sign onnx Operator.
Node NonMaxSuppressionNode(Graph graph, Tensor in_boxes, Tensor scores, Tensor out_selected_indices, int32 center_point_box =0, int32 max_output_boxes_per_class =0, float iou_threshold =0, float score_threshold =0, float32 in_boxes_scale =0.0f, int32 in_boxes_zero_point =0, float32 scores_scale =0.0f, int32 scores_zero_point =0, float32 out_selected_indices_scale =0.0f, int32 out_selected_indices_zero_point =0, bool with_sort =true)
NonMaxSuppression Operator.
Node MaxRoiPoolNode(Graph graph, Tensor input, Tensor rois, Tensor output, int32 pooled_shape_height, int32 pooled_shape_width, float32 spatial_scale_factor =1.0f, float32 input_scale =0.0f, int32 input_zero_point =0, float32 rois_scale =0.0f, int32 rois_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
MaxRoiPoolNode.
Node RoiAlignNode(Graph graph, Tensor input, Tensor rois, Tensor output, RoiAlignMode mode =RoiAlignMode::AVG, int32 output_height =1, int32 output_width =1, int32 sampling_ratio =0, float32 spatial_scale_factor =1.0, float32 input_scale =0, int32 input_zero_point =0, float32 output_scale =0, int32 output_zero_point =0, float32 rois_scale =0, int32 rois_zero_point =0)
RoiAlignNode.
Node CeilNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
Ceil onnx Operator.
Node FloorNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
Floor onnx Operator.
Node RoundNode(Graph graph, Tensor a, Tensor b, float32 a_scale =0, int32 a_zero_point =0, float32 b_scale =0, int32 b_zero_point =0)
Round onnx Operator.
Node IsNaNNode(Graph graph, Tensor input, Tensor output, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
IsNan onnx Operator.
Node IsInfNode(Graph graph, Tensor input, Tensor output, int32 detect_negative, int32 detect_positive, float32 input_scale =0.0f, int32 input_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
IsInf onnx Operator.
Node Concat2Node(Graph graph, Tensor input1, Tensor input2, Tensor output, int axis, float32 input1_scale =0.0f, int32 input1_zero_point =0, float32 input2_scale =0.0f, int32 input2_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
Concate2 onnx Operator.
Node Concat3Node(Graph graph, Tensor input1, Tensor input2, Tensor input3, Tensor output, int axis, float32 input1_scale =0.0f, int32 input1_zero_point =0, float32 input2_scale =0.0f, int32 input2_zero_point =0, float32 input3_scale =0.0f, int32 input3_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
Concate3 onnx Operator.
Node Concat4Node(Graph graph, Tensor input1, Tensor input2, Tensor input3, Tensor input4, Tensor output, int32 axis, float32 input1_scale =0.0f, int32 input1_zero_point =0, float32 input2_scale =0.0f, int32 input2_zero_point =0, float32 input3_scale =0.0f, int32 input3_zero_point =0, float32 input4_scale =0.0f, int32 input4_zero_point =0, float32 output_scale =0.0f, int32 output_zero_point =0)
Concate4 onnx Operator.
uint32_t GetInputParamIndex(Node node, int32 param_num)
Get the index of the input parameter param_num for given node.
uint32_t GetOutputParamIndex(Node node)
Get the index of the output parameter for given node.
Node CustomNodeFromKernel(Graph graph, Kernel kernel, std::vector< Tensor > outputs, std::vector< Tensor > inputs, std::vector< Scalar > scalars ={}, std::vector< int32 > input_zero_points ={}, std::vector< float32 > input_scales ={}, std::vector< int32 > output_zero_points ={}, std::vector< float32 > output_scales ={}, std::string kernel_file_name ={})
Create a custom node from an OpenVX kernel.
Node ResizeNode(Graph graph, Tensor a, Tensor b, uint32x4 scales, InterpolationMode mode =InterpolationMode::NEAREST, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Onnx Resize-10 supported.
Node ResizeNode(Graph graph, Tensor a, Tensor b, float32x4 scales, uint32x4 roi_start, uint32x4 roi_end, InterpolationMode mode =InterpolationMode::NEAREST, CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL, NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR, int32 exclude_outside =0, float32 extrapolation_value =0.0f, float32 cubic_coeff_a =-0.75f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Node ResizeNode(Graph graph, Tensor a, Tensor b, uint32x4 scales, uint32x4 roi_start, uint32x4 roi_end, InterpolationMode mode =InterpolationMode::NEAREST, CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL, NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR, int32 exclude_outside =0, float32 extrapolation_value =0.0f, float32 cubic_coeff_a =-0.75f, float32 a_scale =0.0f, int32 a_zero_point =0, float32 b_scale =0.0f, int32 b_zero_point =0)
Onnx Resize-11 supported.
std::string to_string(const ConfigurationValue & value)
std::ostream & operator<<(std::ostream & s, const ConfigurationValue & value)

Types Documentation

enum @909

Enumerator Value Description
INVALID_PARAM_INDEX 0xffffffff

enum OnnxStatus

Enumerator Value Description
ONNX_ERROR_INVALID_PARAMETERS VX_ERROR_INVALID_PARAMETERS
ONNX_FAILURE VX_FAILURE
ONNX_SUCCESS VX_SUCCESS

enum TensorType

Enumerator Value Description
INVALID 0x0000
INT8 0x0001
UINT8 0x0002
INT16 0x0003
UINT16 0x0004
INT32 0x0005
UINT32 0x0006
INT64 0x0007
UINT64 0x0008
FLOAT8 0x0009
FLOAT16 0x000A
BFLOAT16 0x000B
FLOAT32 0x000C
FLOAT64 0x000D

enum ShiftDirection

Enumerator Value Description
LEFT
RIGHT

enum InterpolationMode

Enumerator Value Description
NEAREST 0
BILINEAR 1
CUBIC 2

enum CoordinateTransformationMode

Enumerator Value Description
HALF_PIXEL 0
PYTORCH_HALF_PIXEL 1
ALIGN_CORNERS 2
ASYMMETRIC 3
TF_HALF_PIXEL_FOR_NN 4
TF_CROP_AND_RESIZE 5

enum NearestMode

Enumerator Value Description
ROUND_PREFER_FLOOR 0
ROUND_PREFER_CEIL 1
FLOOR 2
CEIL 3

enum DepthToSpaceMode

Enumerator Value Description
DCR 0
CRD 1

enum RoiAlignMode

Enumerator Value Description
MAX
AVG

using int8

using int8 =  int8_t;

using uint8

using uint8 =  uint8_t;

using int16

using int16 =  int16_t;

using uint16

using uint16 =  uint16_t;

using int32

using int32 =  int32_t;

using uint32

using uint32 =  uint32_t;

using int64

using int64 =  int64_t;

using uint64

using uint64 =  uint64_t;

using float32

using float32 =  float;

using float64

using float64 =  double;

using Node

using Node =  vx_node;

using Graph

using Graph =  vx_graph;

using Kernel

using Kernel =  vx_kernel;

using Parameter

using Parameter =  vx_parameter;

using Context

using Context =  vx_context;

using Tensor

using Tensor =  vx_tensor;

using Scalar

using Scalar =  vx_scalar;

using Image

using Image =  vx_image;

using Status

using Status =  vx_status;

using Reference

using Reference =  vx_reference;

using TensorView

using TensorView =  vx_tensor_view;

using ConfigurationMapping

using ConfigurationMapping =  std::map<std::string, ConfigurationValue>;

Functions Documentation

function CreateContext

Context CreateContext()

Creates a context.

Return: The reference to the implementation context.

Note: This is required to do anything else.

Postcondition: ReleaseContext

This creates a top-level object context.

function SetConfiguration

Status SetConfiguration(
    Context c,
    std::string name,
    ConfigurationValue value
)

Change configuration item.

Parameters:

  • c The context to set the configuration item on.
  • name Name of configuration item.
  • value New value of configuration item.

Return: VX_SUCCESS if no error occurred. VX_ERROR_INVALID_PARAMETERS if the value is an invalid type or value.

Modify configuration item on context c. Check the vx error log for more information on why a failure occurred.

function GetConfiguration

ConfigurationMapping GetConfiguration(
    Context c
)

Get current configuration state.

Parameters:

  • c The context to get the configuration from.

Return: Mapping of configuration item to (type, value) where type is a ConfigurationValue.

function CreateGraph

Graph CreateGraph(
    Context c
)

function ProcessGraph

Status ProcessGraph(
    Graph g
)

function ReleaseGraph

Status ReleaseGraph(
    Graph * g
)

function ReleaseContext

Status ReleaseContext(
    Context * c
)

function GetStatus

Status GetStatus(
    Reference obj
)

function AddParameterToGraph

Status AddParameterToGraph(
    Graph g,
    Parameter p
)

function SetGraphParameterByIndex

Status SetGraphParameterByIndex(
    Graph g,
    uint32 index,
    Reference obj
)

function GetParameterByIndex

Parameter GetParameterByIndex(
    Node n,
    uint32 index
)

function ReleaseParameter

Status ReleaseParameter(
    Parameter * p
)

function ReleaseNode

Status ReleaseNode(
    Node * n
)

function ReleaseTensor

Status ReleaseTensor(
    Tensor * t
)

function SetReferenceName

Status SetReferenceName(
    Reference obj,
    const char * name
)

function CreateTensorFromRawFile

Tensor CreateTensorFromRawFile(
    Context c,
    const char * filename,
    int32 num_of_dims,
    uint32x4 sizes,
    TensorType data_format
)

function CreateTensor

Tensor CreateTensor(
    Context c,
    int32 num_of_dims,
    uint32x4 sizes,
    TensorType data_format
)

function CreateVirtualTensor

Tensor CreateVirtualTensor(
    Graph g,
    int32 num_of_dims,
    uint32x4 sizes,
    TensorType data_format
)

function CreateWeightsTensorFromRawFile

Tensor CreateWeightsTensorFromRawFile(
    Context c,
    const char * filename,
    uint32x4 sizes,
    TensorType data_format
)

function SaveTensorToRawFile

Status SaveTensorToRawFile(
    Tensor t,
    const char * filename
)

function CreateTensorView

TensorView CreateTensorView(
    Context c,
    uint32x4 start,
    uint32x4 end,
    int32 num_of_dims
)

function CreateTensorFromView

Tensor CreateTensorFromView(
    Tensor t,
    TensorView view
)

function AbsNode

Node AbsNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

AbsNode operator performs element-wise Absolute operation.

Parameters:


function AddNode

Node AddNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function AveragePoolNode

Node AveragePoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    uint8 ceil_mode =0,
    uint8x4 kernel_shape ={1, 1, 0, 0},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1, 1, 1},
    uint8 count_include_pad =0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

AveragePool operator performs element-wise average pooling operation on subset of tensor.

Parameters:



function BatchNormalizationNode

Node BatchNormalizationNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor weight,
    Tensor bias,
    Tensor weight_scale,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 bias_scale =0.0f,
    int32 bias_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    Tensor var =nullptr,
    Tensor mean =nullptr
)

BatchNorm operator performs element-wise max operation on subset of tensor.

Parameters:


  • weight => input_var weight_scale => scale

function BitShiftNode

Node BitShiftNode(
    Graph g,
    Tensor a,
    Tensor b,
    Tensor c,
    ShiftDirection dir,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Bitwise shift operator performs element-wise operation.

Parameters:


function EluNode

Node EluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 alpha =1.0f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Elu operator performs element-wise function on input tensor.

Parameters:


function GemmNode

Node GemmNode(
    Graph graph,
    Tensor x,
    Tensor y,
    Tensor w,
    Tensor b =nullptr,
    float32 alpha =1.0f,
    float32 beta =1.0f,
    int32 transX =0,
    int32 transY =0,
    float32 x_scale =0.0f,
    int32 x_zero_point =0,
    float32 y_scale =0.0f,
    int32 y_zero_point =0,
    float32 w_scale =0.0f,
    int32 w_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    uint8 shift_flag =1,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function GlobalAveragePoolNode

Node GlobalAveragePoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

GlobalAveragePool operator performs global average pooling operation on subset of tensor.

Parameters:



function LeakyReluNode

Node LeakyReluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 alpha =1.0f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 alpha_scale =0.0f,
    int32 alpha_zero_point =0
)

Parameters:


function LpNormalizationNode

Node LpNormalizationNode(
    Graph g,
    Tensor a,
    Tensor b,
    int32 p =2,
    int32 axis =-1,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    Tensor weight =nullptr,
    float32 weight_scale =0.0f,
    int32 weight_zero_point =0
)

Parameters:


function LRNNode

Node LRNNode(
    Graph g,
    Tensor a,
    Tensor b,
    uint32 size,
    float32 alpha =0.0001,
    float32 beta =0.75,
    float32 bias =1.0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function MatMulNode

Node MatMulNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0
)

Parameters:


function MaxPoolNode

Node MaxPoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    uint8 ceil_mode =0,
    uint8x4 dilations ={1, 1, 1, 1},
    uint8x4 kernel_shape ={1, 1, 0, 0},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1, 1, 1},
    uint8 storage_order =0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

MaxPool operator performs element-wise max operation on subset of tensor.

Parameters:



function MulNode

Node MulNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function QLinearConvNode

Node QLinearConvNode(
    Graph graph,
    Tensor x,
    Tensor y,
    Tensor w,
    Tensor b =nullptr,
    uint8x4 dilations ={1, 1, 1, 1},
    uint32 group =1,
    uint8x4 kernel_shape ={0, 0, 0, 0},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1, 1},
    float32 x_scale =0.0f,
    int32 x_zero_point =0,
    float32 y_scale =0.0f,
    int32 y_zero_point =0,
    float32 w_scale =0.0f,
    int32 w_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    uint8 shift_flag =1
)

Parameters:


function QLinearConvNode2

Node QLinearConvNode2(
    Graph graph,
    Tensor x,
    Tensor y,
    Tensor w,
    Tensor b =nullptr,
    uint8x4 dilations ={1, 1, 1, 1},
    uint32 group =1,
    uint8x4 kernel_shape ={0, 0, 0, 0},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1, 1},
    float32 x_scale =0.0f,
    int32 x_zero_point =0,
    Tensor y_scale =nullptr,
    int32 y_zero_point =0,
    float32 w_scale =0.0f,
    int32 w_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    uint8 shift_flag =1
)

function ConvTransposeNode

Node ConvTransposeNode(
    Graph graph,
    Tensor x,
    Tensor y,
    Tensor w,
    Tensor b =nullptr,
    uint8x4 dilations ={1, 1, 1, 1},
    uint32 group =1,
    uint8x4 kernel_shape ={0, 0, 0, 0},
    uint8x4 output_padding ={0, 0, 0, 0},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1, 1},
    float32 x_scale =0.0f,
    int32 x_zero_point =0,
    float32 y_scale =0.0f,
    int32 y_zero_point =0,
    float32 w_scale =0.0f,
    int32 w_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    uint8 shift_flag =1
)

Parameters:


function ReluNode

Node ReluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function ResizeNode

Node ResizeNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32x4 scales,
    Tensor roi,
    InterpolationMode mode =InterpolationMode::NEAREST,
    CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL,
    NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR,
    int32 exclude_outside =0,
    float32 extrapolation_value =0.0f,
    float32 cubic_coeff_a =-0.75f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Onnx Resize-11 supported.

Parameters:


function ReshapeNode

Node ReshapeNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function SoftmaxNode

Node SoftmaxNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =-1,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function SpaceToDepthNode

Node SpaceToDepthNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 blocksize,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function TransposeNode

Node TransposeNode(
    Graph graph,
    Tensor input,
    Tensor out,
    uint8x4 perm ={0, 1, 2, 3},
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Parameters:


function SeluNode

Node SeluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 alpha =1.67326f,
    float32 gamma =1.0507f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function HardSigmoidNode

Node HardSigmoidNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 alpha =0.2f,
    float32 beta =0.5f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function AndNode

Node AndNode(
    Graph graph,
    Tensor in0,
    Tensor in1,
    Tensor out,
    float32 in0_scale =0.0f,
    int32 in0_zero_point =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

AndNode operator performs element-wise Absolute operation.

Parameters:


function SubNode

Node SubNode(
    Graph graph,
    Tensor in0,
    Tensor in1,
    Tensor out,
    float32 in0_scale =0.0f,
    int32 in0_zero_point =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

SubNode operator performs element-wise Absolute operation.

Parameters:


function Sum3Node

Node Sum3Node(
    Graph graph,
    Tensor in0,
    Tensor in1,
    Tensor in2,
    Tensor out,
    float32 in0_scale =0.0f,
    int32 in0_zero_point =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 in2_scale =0.0f,
    int32 in2_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

SumNode(3-input) operator performs element-wise Absolute operation.

Parameters:


function Sum4Node

Node Sum4Node(
    Graph graph,
    Tensor in0,
    Tensor in1,
    Tensor in2,
    Tensor in3,
    Tensor out,
    float32 in0_scale =0.0f,
    int32 in0_zero_point =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 in2_scale =0.0f,
    int32 in2_zero_point =0,
    float32 in3_scale =0.0f,
    int32 in3_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

SumNode(3-input) operator performs element-wise Absolute operation.

Parameters:


function TanhNode

Node TanhNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

TanhNode operator performs element-wise Absolute operation.

Parameters:


function DepthToSpaceNode

Node DepthToSpaceNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 blocksize,
    DepthToSpaceMode mode =DepthToSpaceMode::DCR,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

DepthToSpace operator performs bitwise DepthToSpace conversion.

Parameters:


function SliceNode

Node SliceNode(
    Graph graph,
    Tensor input,
    Tensor output,
    int32x4 starts,
    int32x4 ends,
    int32x4 axes,
    int32x4 steps ={1, 1, 1, 1},
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

Slice operator performs bitwise slice operation.

Parameters:


function Split2Node

Node Split2Node(
    Graph graph,
    Tensor input,
    Tensor output0,
    Tensor output1,
    int32x4 split ={0, 0, 0, 0},
    int32 axis =0,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output0_scale =0.0f,
    int32 output0_zero_point =0,
    float32 output1_scale =0.0f,
    int32 output1_zero_point =0
)

Split operator performs bitwise split operation.

Parameters:


function Split3Node

Node Split3Node(
    Graph graph,
    Tensor input,
    Tensor output0,
    Tensor output1,
    Tensor output2,
    int32x4 split ={0, 0, 0, 0},
    int32 axis =0,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output0_scale =0.0f,
    int32 output0_zero_point =0,
    float32 output1_scale =0.0f,
    int32 output1_zero_point =0,
    float32 output2_scale =0.0f,
    int32 output2_zero_point =0
)

Split operator performs bitwise split operation.

Parameters:


function Split4Node

Node Split4Node(
    Graph graph,
    Tensor input,
    Tensor output0,
    Tensor output1,
    Tensor output2,
    Tensor output3,
    int32x4 split ={0, 0, 0, 0},
    int32 axis =0,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output0_scale =0.0f,
    int32 output0_zero_point =0,
    float32 output1_scale =0.0f,
    int32 output1_zero_point =0,
    float32 output2_scale =0.0f,
    int32 output2_zero_point =0,
    float32 output3_scale =0.0f,
    int32 output3_zero_point =0
)

Split operator performs bitwise split operation.

Parameters:


function ReduceMaxNode

Node ReduceMaxNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceMax onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes max of input tensor's elements along provided axes.

function ReduceMinNode

Node ReduceMinNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceMin onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which minimum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdim equals 1. If keepdim equals 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes min of input tensor's elements along provided axes.

function ReduceMeanNode

Node ReduceMeanNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceMean onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which mean values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdim equals 1. If keepdim equals 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes mean of input tensor's elements along provided axes.

function ReduceSumNode

Node ReduceSumNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceSum onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdim equals 1. If keepdim equals 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes sum of input tensor's elements along provided axes.

function ClipNode

Node ClipNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 min =1.17549435e-38,
    float32 max =3.38953139e+38
)

Clip onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • min minimum value to be clipped
  • max maximum value to be clipped
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

performs element-wise Type Clip operation.

function Max2Node

Node Max2Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Max2 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Max operation with 2 inputs.

function Max3Node

Node Max3Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Max3 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Max operation with 3 inputs.

function Max4Node

Node Max4Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    Tensor e,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    float32 e_scale =0.0f,
    int32 e_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Max4 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Max operation with 4 inputs.

function Mean2Node

Node Mean2Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Mean2 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Mean operation with 2 inputs.

function Mean3Node

Node Mean3Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Mean3 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Mean operation with 3 inputs.

function Mean4Node

Node Mean4Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    Tensor e,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    float32 e_scale =0.0f,
    int32 e_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Mean4 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Mean operation with 4 inputs.

function LessNode

Node LessNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function SigmoidNode

Node SigmoidNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function XorNode

Node XorNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function ShrinkNode

Node ShrinkNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float bias =0.0f,
    float lambd =0.5,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function OrNode

Node OrNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function GreaterNode

Node GreaterNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Parameters:


function NotNode

Node NotNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function NegNode

Node NegNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Parameters:


function Min2Node

Node Min2Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Min2 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Min operation with 2 inputs.

function Min3Node

Node Min3Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Min3 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Min operation with 3 inputs.

function Min4Node

Node Min4Node(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    Tensor d,
    Tensor e,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    float32 d_scale =0.0f,
    int32 d_zero_point =0,
    float32 e_scale =0.0f,
    int32 e_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Min4 onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Min operation with 4 inputs.

function DivNode

Node DivNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Div onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Div operation with 2 inputs.

function ThresholdedReluNode

Node ThresholdedReluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 alpha =1.0f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

ThresholdedReluNode operator performs element-wise function on input tensor.

Parameters:


function PReluNode

Node PReluNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

PRelu onnx Operator.

Parameters:

  • a Input Tensor
  • b Input Tensor
  • c Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale
  • b_zero_point Input Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

performs element-wise Type Div operation with 2 inputs.

function SqueezeNode

Node SqueezeNode(
    Graph graph,
    Tensor input,
    Tensor out,
    int8x4 axes ={4, 4, 4, 4},
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Squeeze Node

function UnsqueezeNode

Node UnsqueezeNode(
    Graph graph,
    Tensor input,
    Tensor out,
    int8x4 axes,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Unsqueeze Node

function GatherElementsNode

Node GatherElementsNode(
    Graph graph,
    Tensor input,
    Tensor out,
    Tensor index,
    int32 axis =0,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    float32 index_scale =0.0f,
    int32 index_zero_point =0
)

GatherElements Node

function ReduceProdNode

Node ReduceProdNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceProd onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdim equals 1. If keepdim equals 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes produce of input tensor's elements along provided axes.

function ReduceSumSquareNode

Node ReduceSumSquareNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceSumSquare onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdim equal 1. If keepdim equals 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes Sum of Squares of input tensor's elements along provided axes.

function SoftsignNode

Node SoftsignNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

SoftSign onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

SoftSign(x) = x/(1+|x|)

function EqualNode

Node EqualNode(
    Graph graph,
    Tensor in1,
    Tensor in2,
    Tensor out,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 in2_scale =0.0f,
    int32 in2_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Equal onnx Operator.

Parameters:

  • in1 Input Tensor
  • in2 Input Tensor
  • out Output Tensor
  • in1_scale Input Tensor's scale
  • in1_zero_point Input Tensor's zero point value
  • in2_scale Input Tensor's scale
  • in2_zero_point Input Tensor's zero point value
  • out_scale Output Tensor's scale
  • out_zero_point Output Tensor's zero point value

performs element-wise equals operation with 2 inputs.

function ModNode

Node ModNode(
    Graph graph,
    Tensor in1,
    Tensor in2,
    Tensor out,
    int8 fmod =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 in2_scale =0.0f,
    int32 in2_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Mod onnx Operator.

Parameters:

  • in1 Input Tensor
  • in2 Input Tensor
  • out Output Tensor
  • in1_scale Input Tensor's scale
  • in1_zero_point Input Tensor's zero point value
  • in2_scale Input Tensor's scale
  • in2_zero_point Input Tensor's zero point value
  • out_scale Output Tensor's scale
  • out_zero_point Output Tensor's zero point value

performs element-wise modulus operation with 2 inputs.

function IdentityNode

Node IdentityNode(
    Graph graph,
    Tensor input,
    Tensor output,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

Identity onnx Operator.

Parameters:

  • input Input Tensor
  • output Output Tensor

performs element-wise data copying to output.

function ScatterElementsNode

Node ScatterElementsNode(
    Graph graph,
    Tensor data,
    Tensor update,
    Tensor out,
    Tensor indices,
    int axis =1,
    float32 data_scale =0.0f,
    int32 data_zero_point =0,
    float32 update_scale =0.0f,
    int32 update_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    float32 indices_scale =0.0f,
    int32 indices_zero_point =0
)

ScatterElements onnx Operator.

Parameters:

  • data Input Tensor
  • indices Input Tensor
  • update Input Tensor
  • out Output Tensor
  • in1_scale Input Tensor's scale
  • in1_zero_point Input Tensor's zero point value
  • indices_scale Input Tensor's scale
  • indices_zero_point Input Tensor's zero point value
  • update_scale Input Tensor's scale
  • update_zero_point Input Tensor's zero point value
  • out_scale Output Tensor's scale
  • out_zero_point Output Tensor's zero point value

performs element-wise scatter operation.

function SqrtNode

Node SqrtNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Sqrt operator performs element-wise sqrt operation.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Square root takes one input data (Tensor) and produces one output data (Tensor) where the square root is, y = x^0.5, is applied to the tensor elementwise.

function ReciprocalNode

Node ReciprocalNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Reciprocal Node

function SinNode

Node SinNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Sin Node

function CosNode

Node CosNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Cos Node

function Sum2Node

Node Sum2Node(
    Graph graph,
    Tensor in0,
    Tensor in1,
    Tensor out,
    float32 in0_scale =0.0f,
    int32 in0_zero_point =0,
    float32 in1_scale =0.0f,
    int32 in1_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

SumNode(2-input) operator performs element-wise Absolute operation.

Parameters:


function HardmaxNode

Node HardmaxNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =1,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Hardmax onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating conversion type to 2d representation
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

performs row wise max operation in 2d representation of given input tensor

function ArgMaxNode

Node ArgMaxNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =0,
    int32 keepdims =1,
    int32 select_last_index =0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Argmax onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating on which axis Argmax operation to be performed
  • select_last_index indicates which index to be taken
  • keepdims indicates to clip axis in the output
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

performs axis wise Argmax operation

function ArgMinNode

Node ArgMinNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =0,
    int32 keepdims =1,
    int32 select_last_index =0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Argmin onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating on which axis Argmin operation to be performed
  • select_last_index indicates which index to be taken
  • keepdims indicates to clip axis in the output
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

performs axis wise Argmin operation

function CoshNode

Node CoshNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

CoshNode operator performs element-wise Absolute operation.

Parameters:


function AcoshNode

Node AcoshNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

ACoshNode operator performs element-wise Absolute operation.

Parameters:


function AcosNode

Node AcosNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

AcosNode operator performs element-wise Absolute operation.

Parameters:


function AtanhNode

Node AtanhNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

AtanhNode operator performs element-wise Absolute operation.

Parameters:


function AtanNode

Node AtanNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

AtanNode operator performs element-wise Absolute operation.

Parameters:


function AsinNode

Node AsinNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Asin onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the arcsine (inverse of sine) of the given input tensor, element-wise.

function AsinhNode

Node AsinhNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Asinh onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the hyperbolic arcsine of the given input tensor element-wise.

function SinhNode

Node SinhNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Sinh onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating conversion type to 2d representation
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the hyperbolic sine of the given input tensor element-wise

function ExpNode

Node ExpNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Exp onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating conversion type to 2d representation
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the exponential of the given input tensor, element-wise.

function TanNode

Node TanNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Tan onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating conversion type to 2d representation
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the tangent of the given input tensor element-wise.

function PowNode

Node PowNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 c_scale =0.0f,
    int32 c_zero_point =0,
    uint8x4 broadcast_axis ={0, 0, 0, 0}
)

Pow onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis indicating conversion type to 2d representation
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates element wise exponent of input1^input2 tensors

function ExpandNode

Node ExpandNode(
    Graph graph,
    Tensor input,
    Tensor out,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0
)

Expand onnx Operator.

Parameters:

  • in Input Tensor
  • out Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

performs element wise expand operation

function SoftplusNode

Node SoftplusNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

SoftplusNode operator performs element-wise Softplus operation.

Parameters:

  • a Input Tensor
  • b Output Tensor

function ReduceLogSumNode

Node ReduceLogSumNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceLogSum onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes log of sum of input tensor's elements along provided axes.

function ReduceLogSumExpNode

Node ReduceLogSumExpNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceLogSumExp onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes log of sum of exponent of input tensor's elements along provided axes.

function ReduceL1Node

Node ReduceL1Node(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceL1 onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes L1 norm of input tensor's elements along provided axes.

function ReduceL2Node

Node ReduceL2Node(
    Graph graph,
    Tensor a,
    Tensor b,
    int8x4 axes,
    int32 keepdim =1,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

ReduceL2 onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axes axes along which maximum values are claculated.
  • keepdim The resulting tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulting tensor has the reduced dimension pruned.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Computes L2 norm of input tensor's elements along provided axes.

function LogNode

Node LogNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

LogNode onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates the natural log of the given input tensor, element-wise.

function GlobalMaxPoolNode

Node GlobalMaxPoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

GlobalMaxPool onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

fids the max element in the spatial dimension of the given input tensor

function LpPoolNode

Node LpPoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    uint8x4 kernel_shape ={1, 1},
    int p =2,
    uint8x4 pads ={0, 0},
    uint8x4 strides ={1, 1},
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

LpPool onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • kernel_shape The size of the kernel along each axis.
  • p p value of the Lp norm used to pool over the input data.
  • pads Padding for the beginning and ending along each spatial axis
  • strides Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

LpPool consumes an input tensor X and applies Lp pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. Lp pooling consisting of computing the Lp norm on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing.

function GlobalLpPoolNode

Node GlobalLpPoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int p =2,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

GlobalLpPool onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • p p value of the Lp norm used to pool over the input data.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

GlobalLpPool consumes an input tensor X and applies lp pool pooling across the values in the same channel. This is equivalent to LpPool with kernel size equal to the spatial dimension of input tensor.

function GatherNode

Node GatherNode(
    Graph graph,
    Tensor input,
    Tensor out,
    Tensor index,
    int32 axis =0,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    float32 index_scale =0.0f,
    int32 index_zero_point =0
)

Gather details param

function LogSoftmaxNode

Node LogSoftmaxNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =-1,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

LogSoftmax onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis scalar
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Calculates log to the softmax to given input tensor, element-wise.

function MaxUnpoolNode

Node MaxUnpoolNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor c,
    uint8x4 kernel_shape ={1, 1},
    uint8x4 pads ={0, 0, 0, 0},
    uint8x4 strides ={1, 1},
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 c_scale =0,
    int32 c_zero_point =0
)

MaxUnpool onnx Operator.

Parameters:

  • a Input data tensor that has to be unpooled.
  • b Input data tensor containing the indices corresponding to elements in the first input tensor.
  • c Output data tensor that contains the result of the unpooling.
  • kernel_shape The size of the kernel along each axis.
  • pads Padding for the beginning and ending along each spatial axis
  • strides Stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value
  • c_scale Output Tensor's scale
  • c_zero_point Output Tensor's zero point value

MaxUnpool essentially computes the partial inverse of the MaxPool op.

function InstanceNormalizationNode

Node InstanceNormalizationNode(
    Graph graph,
    Tensor input,
    Tensor out,
    Tensor s,
    Tensor b,
    float epsilon =0.00001f,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 out_scale =0.0f,
    int32 out_zero_point =0,
    float32 s_scale =0.0f,
    int32 s_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

InstanceNormalization onnx Operator.

Parameters:

  • in Input Tensor
  • out Output Tensor
  • s 1-D Tensor
  • b 1-D Tensor
  • epsilon avoids divide by zero condition
  • in_scale Output Tensor's scale
  • in_zero_point Input Tensor's zero point value
  • out_scale Output Tensor's scale
  • out_zero_point Output Tensor's zero point value
  • s_scale s Tensor's scale
  • s_zero_point s Tensor's zero point value
  • b_scale b Tensor's scale
  • b_zero_point b Tensor's zero point value

performs axis wise Argmin operation

function CumSumNode

Node CumSumNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =0,
    int8 exclusive =0,
    int8 reverse =0,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

CumSum onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • axis Axis along which CumSum operation is performed
  • exclusive If set to 1 will return exclusive sum in which the top element is not included.
  • reverse If set to 1 will perform the sums in reverse direction.
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Performs cumulative sum of the input elements along the given axis.

function OneHotNode

Node OneHotNode(
    Graph graph,
    Tensor a,
    Tensor b,
    int32 axis =-1,
    int32 depth =0,
    float32 off_value =0.0f,
    float32 on_value =0.0f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

function ErfNode

Node ErfNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

function GatherNDNode

Node GatherNDNode(
    Graph graph,
    Tensor a,
    Tensor b,
    Tensor indices,
    int32 batch_dim =0,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0,
    float32 indices_scale =0.0f,
    int32 indices_zero_point =0
)

Gather onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • c Indices Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale
  • b_zero_point Output Tensor's zero point value

Performs gather operation on input elements along the given indices

function ScatterNDNode

Node ScatterNDNode(
    Graph graph,
    Tensor input,
    Tensor updates,
    Tensor out,
    Tensor indices,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 updates_scale =0.0f,
    int updates_zero_point =0,
    float32 out_scale =0.0f,
    int out_zero_point =0,
    float32 indices_scale =0.0f,
    int indices_zero_point =0
)

function SignNode

Node SignNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

Sign onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale, always zero
  • b_zero_point Input Tensor's zero point value, always zero

Calculate the sign of the given input tensor element-wise. If input

0, output 1. if input < 0, output -1. if input == 0, output 0.

function NonMaxSuppressionNode

Node NonMaxSuppressionNode(
    Graph graph,
    Tensor in_boxes,
    Tensor scores,
    Tensor out_selected_indices,
    int32 center_point_box =0,
    int32 max_output_boxes_per_class =0,
    float iou_threshold =0,
    float score_threshold =0,
    float32 in_boxes_scale =0.0f,
    int32 in_boxes_zero_point =0,
    float32 scores_scale =0.0f,
    int32 scores_zero_point =0,
    float32 out_selected_indices_scale =0.0f,
    int32 out_selected_indices_zero_point =0,
    bool with_sort =true
)

NonMaxSuppression Operator.

Parameters:


function MaxRoiPoolNode

Node MaxRoiPoolNode(
    Graph graph,
    Tensor input,
    Tensor rois,
    Tensor output,
    int32 pooled_shape_height,
    int32 pooled_shape_width,
    float32 spatial_scale_factor =1.0f,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 rois_scale =0.0f,
    int32 rois_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

MaxRoiPoolNode.

Parameters:


function RoiAlignNode

Node RoiAlignNode(
    Graph graph,
    Tensor input,
    Tensor rois,
    Tensor output,
    RoiAlignMode mode =RoiAlignMode::AVG,
    int32 output_height =1,
    int32 output_width =1,
    int32 sampling_ratio =0,
    float32 spatial_scale_factor =1.0,
    float32 input_scale =0,
    int32 input_zero_point =0,
    float32 output_scale =0,
    int32 output_zero_point =0,
    float32 rois_scale =0,
    int32 rois_zero_point =0
)

RoiAlignNode.

Parameters:


function CeilNode

Node CeilNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

Ceil onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale, always zero
  • b_zero_point Input Tensor's zero point value, always zero

Calculate the ceil of the given input tensor element-wise.

function FloorNode

Node FloorNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

Floor onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Input Tensor's scale, always zero
  • b_zero_point Input Tensor's zero point value, always zero

Calculate the floor of the given input tensor element-wise.

function RoundNode

Node RoundNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32 a_scale =0,
    int32 a_zero_point =0,
    float32 b_scale =0,
    int32 b_zero_point =0
)

Round onnx Operator.

Parameters:

  • a Input Tensor
  • b Output Tensor
  • a_scale Input Tensor's scale
  • a_zero_point Input Tensor's zero point value
  • b_scale Output Tensor's scale, always zero
  • b_zero_point Output Tensor's zero point value, always zero

Calculate the round of the given input tensor element-wise.

function IsNaNNode

Node IsNaNNode(
    Graph graph,
    Tensor input,
    Tensor output,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

IsNan onnx Operator.

Parameters:

  • input Input Tensor
  • output Output Tensor
  • input_scale Input Tensor's scale
  • input_zero_point Input Tensor's zero point value
  • output_scale Output Tensor's scale
  • output_zero_point Output Tensor's zero point value

Returns which elements of the input are NaN.

function IsInfNode

Node IsInfNode(
    Graph graph,
    Tensor input,
    Tensor output,
    int32 detect_negative,
    int32 detect_positive,
    float32 input_scale =0.0f,
    int32 input_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

IsInf onnx Operator.

Parameters:

  • input Input Tensor
  • output Output Tensor

Returns which elements of the input are Inf.

function Concat2Node

Node Concat2Node(
    Graph graph,
    Tensor input1,
    Tensor input2,
    Tensor output,
    int axis,
    float32 input1_scale =0.0f,
    int32 input1_zero_point =0,
    float32 input2_scale =0.0f,
    int32 input2_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

Concate2 onnx Operator.

Parameters:

  • input1 Input Tensor
  • input2 Input Tensor
  • output Output Tensor
  • axis Axis along concate operation is performed

Concatenate two tensors into a single tensor.

function Concat3Node

Node Concat3Node(
    Graph graph,
    Tensor input1,
    Tensor input2,
    Tensor input3,
    Tensor output,
    int axis,
    float32 input1_scale =0.0f,
    int32 input1_zero_point =0,
    float32 input2_scale =0.0f,
    int32 input2_zero_point =0,
    float32 input3_scale =0.0f,
    int32 input3_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

Concate3 onnx Operator.

Parameters:

  • input1 Input Tensor
  • input2 Input Tensor
  • input3 Input Tensor
  • output Output Tensor
  • axis Axis along concate operation is performed

Concatenate two tensors into a single tensor.

function Concat4Node

Node Concat4Node(
    Graph graph,
    Tensor input1,
    Tensor input2,
    Tensor input3,
    Tensor input4,
    Tensor output,
    int32 axis,
    float32 input1_scale =0.0f,
    int32 input1_zero_point =0,
    float32 input2_scale =0.0f,
    int32 input2_zero_point =0,
    float32 input3_scale =0.0f,
    int32 input3_zero_point =0,
    float32 input4_scale =0.0f,
    int32 input4_zero_point =0,
    float32 output_scale =0.0f,
    int32 output_zero_point =0
)

Concate4 onnx Operator.

Parameters:

  • input1 Input Tensor
  • input2 Input Tensor
  • input3 Input Tensor
  • input4 Input Tensor
  • output Output Tensor
  • axis Axis along concate operation is performed

Concatenate two tensors into a single tensor.

function GetInputParamIndex

uint32_t GetInputParamIndex(
    Node node,
    int32 param_num
)

Get the index of the input parameter param_num for given node.

Parameters:

  • node The node to query
  • param_num One based index of the input parameter index, e.g. for the first input parameter pass 1.

Return: Zero based parameter index of the requested input parameter, or INVALID_PARAM_INDEX on error

Returns the zero based parameter index of the one based param_num input parameter This takes account of the number of output parameters and the ordering of input/output parameters in the given node.

The returned index can be passed directly to GetParameterByIndex.

function GetOutputParamIndex

uint32_t GetOutputParamIndex(
    Node node
)

Get the index of the output parameter for given node.

Parameters:

  • node The node to query

Return: Zero based parameter index of the output parameter, or INVALID_PARAM_INDEX on error

Returns the zero based parameter index of the output parameter for the given node. This takes account of the number of input parameters and the ordering of input/output parameters in the given node.

The returned index can be passed directly to GetParameterByIndex.

function CustomNodeFromKernel

Node CustomNodeFromKernel(
    Graph graph,
    Kernel kernel,
    std::vector< Tensor > outputs,
    std::vector< Tensor > inputs,
    std::vector< Scalar > scalars ={},
    std::vector< int32 > input_zero_points ={},
    std::vector< float32 > input_scales ={},
    std::vector< int32 > output_zero_points ={},
    std::vector< float32 > output_scales ={},
    std::string kernel_file_name ={}
)

Create a custom node from an OpenVX kernel.

Parameters:

  • graph to add the node to.
  • kernel vx_kernel to create a node around.
  • outputs List of output tensors.
  • inputs List of input tensors.
  • scalars List of input scalars.
  • input_zero_points List of input zeropoints, one per input tensor, missing items are defaulted to 0.
  • input_scales List of input scales, one per input tensor, missing items are defaulted to 0.0.
  • output_zero_points List of zeropoints, one per output tensor, missing items are defaulted to 0.
  • output_scales List of output scales, one per output tensor, missing items are defaulted to 0.0.
  • kernel_file_name Path to kernel source, not required.

This function can be used to add an existing vx_kernel to an onnx graph.

function ResizeNode

Node ResizeNode(
    Graph graph,
    Tensor a,
    Tensor b,
    uint32x4 scales,
    InterpolationMode mode =InterpolationMode::NEAREST,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Onnx Resize-10 supported.

Parameters:


function ResizeNode

Node ResizeNode(
    Graph graph,
    Tensor a,
    Tensor b,
    float32x4 scales,
    uint32x4 roi_start,
    uint32x4 roi_end,
    InterpolationMode mode =InterpolationMode::NEAREST,
    CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL,
    NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR,
    int32 exclude_outside =0,
    float32 extrapolation_value =0.0f,
    float32 cubic_coeff_a =-0.75f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

function ResizeNode

Node ResizeNode(
    Graph graph,
    Tensor a,
    Tensor b,
    uint32x4 scales,
    uint32x4 roi_start,
    uint32x4 roi_end,
    InterpolationMode mode =InterpolationMode::NEAREST,
    CoordinateTransformationMode transf_mode =CoordinateTransformationMode::HALF_PIXEL,
    NearestMode nearest_mode =NearestMode::ROUND_PREFER_FLOOR,
    int32 exclude_outside =0,
    float32 extrapolation_value =0.0f,
    float32 cubic_coeff_a =-0.75f,
    float32 a_scale =0.0f,
    int32 a_zero_point =0,
    float32 b_scale =0.0f,
    int32 b_zero_point =0
)

Onnx Resize-11 supported.

Parameters:


function to_string

std::string to_string(
    const ConfigurationValue & value
)

function operator<<

std::ostream & operator<<(
    std::ostream & s,
    const ConfigurationValue & value
)

Updated on 2023-11-29 at 18:22:22 +0000