Eigen¶
Namespace containing all symbols from the Eigen library.
Namespaces¶
Name |
---|
Eigen::Architecture |
Eigen::bfloat16_impl |
Eigen::half_impl |
Eigen::indexing |
Eigen::internal |
Eigen::numext |
Eigen::placeholders |
Eigen::symbolic |
Eigen::TensorSycl |
Classes¶
Name | |
---|---|
class | Eigen::aligned_allocator STL compatible allocator to use with types requiring a non standrad alignment. |
class | Eigen::aligned_allocator_indirection |
class | Eigen::AlignedBox An axis aligned box. |
class | Eigen::AMDOrdering |
class | Eigen::AngleAxis Represents a 3D rotation as a rotation angle around an arbitrary 3D axis. |
class | Eigen::ArithmeticSequence |
class | Eigen::Array General-purpose arrays with easy API for coefficient-wise operations. |
class | Eigen::ArrayBase Base class for all 1D and 2D array, and related expressions. |
class | Eigen::ArrayWrapper Expression of a mathematical vector or matrix as an array object. |
struct | Eigen::ArrayXpr |
struct | Eigen::BandShape |
class | Eigen::BDCSVD class Bidiagonal Divide and Conquer SVD |
struct | Eigen::bfloat16 |
class | Eigen::BiCGSTAB A bi conjugate gradient stabilized solver for sparse square problems. |
class | Eigen::Block Expression of a fixed-size or dynamic-size block. |
class | Eigen::BlockImpl |
class | Eigen::BlockImpl< const SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse > |
class | Eigen::BlockImpl< SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse > |
class | Eigen::BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense > |
class | Eigen::BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse > |
class | Eigen::BlockImpl< XprType, BlockRows, BlockCols, true, Sparse > |
class | Eigen::CholmodBase The base class for the direct Cholesky factorization of Cholmod. |
class | Eigen::CholmodDecomposition A general Cholesky factorization and solver based on Cholmod. |
class | Eigen::CholmodSimplicialLDLT A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod. |
class | Eigen::CholmodSimplicialLLT A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod. |
class | Eigen::CholmodSupernodalLLT A supernodal Cholesky (LLT) factorization and solver based on Cholmod. |
class | Eigen::COLAMDOrdering |
class | Eigen::ColPivHouseholderQR Householder rank-revealing QR decomposition of a matrix with column-pivoting. |
class | Eigen::CommaInitializer Helper class used by the comma initializer operator. |
class | Eigen::CompleteOrthogonalDecomposition Complete orthogonal decomposition (COD) of a matrix. |
class | Eigen::ComplexEigenSolver Computes eigenvalues and eigenvectors of general complex matrices. |
class | Eigen::ComplexSchur Performs a complex Schur decomposition of a real or complex square matrix. |
class | Eigen::Conjugate |
class | Eigen::ConjugateGradient A conjugate gradient solver for sparse (or dense) self-adjoint problems. |
class | Eigen::Cross |
class | Eigen::CwiseBinaryOp Generic expression where a coefficient-wise binary operator is applied to two expressions. |
class | Eigen::CwiseBinaryOpImpl |
class | Eigen::CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse > |
class | Eigen::CwiseNullaryOp Generic expression of a matrix where all coefficients are defined by a functor. |
class | Eigen::CwiseTernaryOp Generic expression where a coefficient-wise ternary operator is applied to two expressions. |
class | Eigen::CwiseTernaryOpImpl |
class | Eigen::CwiseUnaryOp Generic expression where a coefficient-wise unary operator is applied to an expression. |
class | Eigen::CwiseUnaryOpImpl |
class | Eigen::CwiseUnaryView Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector. |
class | Eigen::CwiseUnaryViewImpl |
class | Eigen::CwiseUnaryViewImpl< ViewOp, MatrixType, Dense > |
struct | Eigen::Dense |
class | Eigen::DenseBase Base class for all dense matrices, vectors, and arrays. |
class | Eigen::DenseCoeffsBase |
class | Eigen::DenseCoeffsBase< Derived, DirectAccessors > Base class providing direct read-only coefficient access to matrices and arrays. |
class | Eigen::DenseCoeffsBase< Derived, DirectWriteAccessors > Base class providing direct read/write coefficient access to matrices and arrays. |
class | Eigen::DenseCoeffsBase< Derived, ReadOnlyAccessors > Base class providing read-only coefficient access to matrices and arrays. |
class | Eigen::DenseCoeffsBase< Derived, WriteAccessors > Base class providing read/write coefficient access to matrices and arrays. |
struct | Eigen::DenseShape |
struct | Eigen::DenseSparseProductReturnType |
class | Eigen::DenseStorage |
class | Eigen::DenseStorage< T, 0, _Rows, _Cols, _Options > |
class | Eigen::DenseStorage< T, 0, _Rows, Dynamic, _Options > |
class | Eigen::DenseStorage< T, 0, Dynamic, _Cols, _Options > |
class | Eigen::DenseStorage< T, 0, Dynamic, Dynamic, _Options > |
class | Eigen::DenseStorage< T, Dynamic, _Rows, Dynamic, _Options > |
class | Eigen::DenseStorage< T, Dynamic, Dynamic, _Cols, _Options > |
class | Eigen::DenseStorage< T, Dynamic, Dynamic, Dynamic, _Options > |
class | Eigen::DenseStorage< T, Size, _Rows, Dynamic, _Options > |
class | Eigen::DenseStorage< T, Size, Dynamic, _Cols, _Options > |
class | Eigen::DenseStorage< T, Size, Dynamic, Dynamic, _Options > |
class | Eigen::DenseTimeSparseProduct |
class | Eigen::Diagonal Expression of a diagonal/subdiagonal/superdiagonal in a matrix. |
class | Eigen::DiagonalBase |
class | Eigen::DiagonalMatrix Represents a diagonal matrix with its storage. |
class | Eigen::DiagonalPreconditioner A preconditioner based on the digonal entries. |
class | Eigen::DiagonalProduct |
struct | Eigen::DiagonalShape |
class | Eigen::DiagonalWrapper Expression of a diagonal matrix. |
class | Eigen::DynamicSparseMatrix |
class | Eigen::EigenBase |
class | Eigen::EigenSolver Computes eigenvalues and eigenvectors of general matrices. |
class | Eigen::Flagged |
class | Eigen::ForceAlignedAccess Enforce aligned packet loads and stores regardless of what is requested. |
class | Eigen::FullPivHouseholderQR Householder rank-revealing QR decomposition of a matrix with full pivoting. |
class | Eigen::FullPivLU LU decomposition of a matrix with complete pivoting, and related features. |
struct | Eigen::general_product_to_triangular_selector |
struct | Eigen::general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false > |
struct | Eigen::general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true > |
class | Eigen::GeneralizedEigenSolver Computes the generalized eigenvalues and eigenvectors of a pair of general matrices. |
class | Eigen::GeneralizedSelfAdjointEigenSolver Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem. |
struct | Eigen::GenericNumTraits |
struct | Eigen::half |
class | Eigen::HessenbergDecomposition Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation. |
class | Eigen::Homogeneous Expression of one (or a set of) homogeneous vector(s) |
struct | Eigen::HomogeneousShape |
class | Eigen::HouseholderQR Householder QR decomposition of a matrix. |
class | Eigen::HouseholderSequence Sequence of Householder reflections acting on subspaces with decreasing size. |
class | Eigen::Hyperplane A hyperplane. |
class | Eigen::IdentityPreconditioner A naive preconditioner which approximates any matrix as the identity matrix. |
class | Eigen::IncompleteCholesky Modified Incomplete Cholesky with dual threshold. |
class | Eigen::IncompleteLUT Incomplete LU factorization with dual-threshold strategy. |
class | Eigen::IndexedView Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices. |
class | Eigen::IndexedViewImpl |
class | Eigen::InnerIterator An InnerIterator allows to loop over the element of any matrix expression. |
class | Eigen::InnerStride Convenience specialization of Stride to specify only an inner stride See class Map for some examples. |
class | Eigen::Inverse Expression of the inverse of another expression. |
class | Eigen::InverseImpl |
class | Eigen::InverseImpl< PermutationType, PermutationStorage > |
class | Eigen::IOFormat Stores a set of parameters controlling the way matrices are printed. |
class | Eigen::IterativeSolverBase Base class for linear iterative solvers. |
class | Eigen::JacobiRotation Rotation given by a cosine-sine pair. |
class | Eigen::JacobiSVD Two-sided Jacobi SVD decomposition of a rectangular matrix. |
class | Eigen::KLU |
struct | Eigen::LazyProductReturnType |
class | Eigen::LDLT Robust Cholesky decomposition of a matrix with pivoting. |
class | Eigen::LeastSquareDiagonalPreconditioner Jacobi preconditioner for LeastSquaresConjugateGradient. |
class | Eigen::LeastSquaresConjugateGradient A conjugate gradient solver for sparse (or dense) least-square problems. |
class | Eigen::LLT Standard Cholesky decomposition (LL^T) of a matrix and associated features. |
class | Eigen::Map A matrix or vector expression mapping an existing array of data. |
class | Eigen::Map< const Quaternion< _Scalar >, _Options > Quaternion expression mapping a constant memory buffer. |
class | Eigen::Map< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType > |
class | Eigen::Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, _PacketAccess > |
class | Eigen::Map< Quaternion< _Scalar >, _Options > Expression of a quaternion from a memory buffer. |
class | Eigen::Map< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType > Specialization of class Map for SparseMatrix-like storage. |
class | Eigen::Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, PacketAccess > |
class | Eigen::MapBase |
class | Eigen::MapBase< Derived, ReadOnlyAccessors > Base class for dense Map and Block expression with direct access. |
class | Eigen::MapBase< Derived, WriteAccessors > Base class for non-const dense Map and Block expression with direct access. |
class | Eigen::MappedSparseMatrix Sparse matrix. |
class | Eigen::Matrix The matrix class, also used for vectors and row-vectors. |
class | Eigen::MatrixBase Base class for all dense matrices, vectors, and expressions. |
class | Eigen::MatrixComplexPowerReturnValue |
struct | Eigen::MatrixExponentialReturnValue |
class | Eigen::MatrixFunctionReturnValue |
class | Eigen::MatrixLogarithmReturnValue |
class | Eigen::MatrixPowerReturnValue |
class | Eigen::MatrixSquareRootReturnValue |
class | Eigen::MatrixWrapper Expression of an array as a mathematical vector or matrix. |
struct | Eigen::MatrixXpr |
class | Eigen::MetisOrdering |
class | Eigen::NaturalOrdering |
class | Eigen::NestByValue Expression which must be nested by value. |
class | Eigen::NoAlias Pseudo expression providing an operator = assuming no aliasing. |
class | Eigen::NumTraits Holds information about the various numeric (i.e. scalar) types allowed by Eigen. |
struct | Eigen::NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > > |
struct | Eigen::NumTraits< bool > |
struct | Eigen::NumTraits< double > |
struct | Eigen::NumTraits< Eigen::bfloat16 > |
struct | Eigen::NumTraits< Eigen::half > |
struct | Eigen::NumTraits< float > |
struct | Eigen::NumTraits< long double > |
struct | Eigen::NumTraits< void > |
class | Eigen::OuterStride Convenience specialization of Stride to specify only an outer stride See class Map for some examples. |
class | Eigen::ParametrizedLine A parametrized line. |
class | Eigen::PardisoImpl |
class | Eigen::PardisoLDLT A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library. |
class | Eigen::PardisoLLT A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library. |
class | Eigen::PardisoLU A sparse direct LU factorization and solver based on the PARDISO library. |
struct | Eigen::partial_redux_dummy_func |
class | Eigen::PartialPivLU LU decomposition of a matrix with partial pivoting, and related features. |
class | Eigen::PartialReduxExpr Generic expression of a partially reduxed matrix. |
class | Eigen::PastixBase |
class | Eigen::PastixLDLT A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. |
class | Eigen::PastixLLT A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. |
class | Eigen::PastixLU Interface to the PaStix solver. |
class | Eigen::PermutationBase Base class for permutations. |
class | Eigen::PermutationMatrix Permutation matrix. |
struct | Eigen::PermutationShape |
struct | Eigen::PermutationStorage |
class | Eigen::PermutationWrapper Class to view a vector of integers as a permutation matrix. |
class | Eigen::PlainObjectBase |
class | Eigen::Product Expression of the product of two arbitrary matrices or vectors. |
class | Eigen::ProductImpl |
class | Eigen::ProductImpl< Lhs, Rhs, Option, Dense > |
struct | Eigen::ProductReturnType |
class | Eigen::Quaternion The quaternion class used to represent 3D orientations and rotations. |
class | Eigen::QuaternionBase Base class for quaternion expressions. |
class | Eigen::RealQZ Performs a real QZ decomposition of a pair of square matrices. |
class | Eigen::RealSchur Performs a real Schur decomposition of a square matrix. |
class | Eigen::Ref A matrix or vector expression mapping an existing expression. |
class | Eigen::Ref< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType > |
class | Eigen::Ref< const SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType > |
class | Eigen::Ref< const TPlainObjectType, Options, StrideType > |
class | Eigen::Ref< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType > A sparse matrix expression referencing an existing sparse expression. |
class | Eigen::Ref< SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType > A sparse vector expression referencing an existing sparse vector expression. |
class | Eigen::RefBase |
class | Eigen::Replicate Expression of the multiple replication of a matrix or vector. |
class | Eigen::Reshaped Expression of a fixed-size or dynamic-size reshape. |
class | Eigen::ReshapedImpl |
class | Eigen::ReshapedImpl< XprType, Rows, Cols, Order, Dense > |
class | Eigen::ReturnByValue |
class | Eigen::Reverse Expression of the reverse of a vector or matrix. |
class | Eigen::Rotation2D Represents a rotation/orientation in a 2 dimensional space. |
class | Eigen::RotationBase Common base class for compact rotation representations. |
class | Eigen::ScalarBinaryOpTraits Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. |
struct | Eigen::ScalarBinaryOpTraits< T, T, BinaryOp > |
struct | Eigen::ScalarBinaryOpTraits< T, typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, BinaryOp > |
struct | Eigen::ScalarBinaryOpTraits< T, void, BinaryOp > |
struct | Eigen::ScalarBinaryOpTraits< typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, T, BinaryOp > |
struct | Eigen::ScalarBinaryOpTraits< void, T, BinaryOp > |
struct | Eigen::ScalarBinaryOpTraits< void, void, BinaryOp > |
class | Eigen::Select Expression of a coefficient wise version of the C++ ternary operator ?: |
struct | Eigen::selfadjoint_product_selector |
struct | Eigen::selfadjoint_product_selector< MatrixType, OtherType, UpLo, false > |
struct | Eigen::selfadjoint_product_selector< MatrixType, OtherType, UpLo, true > |
struct | Eigen::selfadjoint_rank1_update |
struct | Eigen::selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs > |
struct | Eigen::selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs > |
class | Eigen::SelfAdjointEigenSolver Computes eigenvalues and eigenvectors of selfadjoint matrices. |
struct | Eigen::SelfAdjointShape |
class | Eigen::SelfAdjointView Expression of a selfadjoint matrix from a triangular part of a dense matrix. |
class | Eigen::SimplicialCholesky |
class | Eigen::SimplicialCholeskyBase A base class for direct sparse Cholesky factorizations. |
class | Eigen::SimplicialLDLT A direct sparse LDLT Cholesky factorizations without square root. |
class | Eigen::SimplicialLLT A direct sparse LLT Cholesky factorizations. |
struct | Eigen::SluMatrix |
struct | Eigen::SluMatrixMapHelper |
struct | Eigen::SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > > |
struct | Eigen::SluMatrixMapHelper< SparseMatrixBase< Derived > > |
class | Eigen::Solve Pseudo expression representing a solving operation. |
class | Eigen::SolveImpl |
class | Eigen::SolveImpl< Decomposition, RhsType, Dense > |
class | Eigen::SolverBase A base class for matrix decomposition and solvers. |
struct | Eigen::SolverShape |
struct | Eigen::SolverStorage |
class | Eigen::SolveWithGuess Pseudo expression representing a solving operation. |
struct | Eigen::Sparse |
class | Eigen::SparseCompressedBase Common base class for sparse [compressed]-{row |
class | Eigen::SparseDenseOuterProduct |
struct | Eigen::SparseDenseProductReturnType |
class | Eigen::SparseDiagonalProduct |
class | Eigen::SparseLU Sparse supernodal LU factorization for general matrices. |
struct | Eigen::SparseLUMatrixLReturnType |
struct | Eigen::SparseLUMatrixUReturnType |
class | Eigen::SparseLUTransposeView |
class | Eigen::SparseMapBase |
class | Eigen::SparseMapBase< Derived, ReadOnlyAccessors > Common base class for Map and Ref instance of sparse matrix and vector. |
class | Eigen::SparseMapBase< Derived, WriteAccessors > Common base class for writable Map and Ref instance of sparse matrix and vector. |
class | Eigen::SparseMatrix A versatible sparse matrix representation. |
class | Eigen::SparseMatrixBase Base class of any sparse matrices or sparse expressions. |
class | Eigen::SparseQR Sparse left-looking QR factorization with numerical column pivoting. |
struct | Eigen::SparseQR_QProduct |
struct | Eigen::SparseQRMatrixQReturnType |
struct | Eigen::SparseQRMatrixQTransposeReturnType |
class | Eigen::SparseSelfAdjointView Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. |
struct | Eigen::SparseShape |
class | Eigen::SparseSolverBase A base class for sparse solvers. |
class | Eigen::SparseSparseProduct |
struct | Eigen::SparseSparseProductReturnType |
class | Eigen::SparseSymmetricPermutationProduct |
class | Eigen::SparseTimeDenseProduct |
class | Eigen::SparseVector a sparse vector class |
class | Eigen::SparseView Expression of a dense or sparse matrix with zero or too small values removed. |
class | Eigen::SPQR Sparse QR factorization based on SuiteSparseQR library. |
struct | Eigen::SPQR_QProduct |
struct | Eigen::SPQRMatrixQReturnType |
struct | Eigen::SPQRMatrixQTransposeReturnType |
class | Eigen::Stride Holds strides information for Map. |
class | Eigen::SuperLU A sparse direct LU factorization and solver based on the SuperLU library. |
class | Eigen::SuperLUBase The base class for the direct and incomplete LU factorization of SuperLU. |
class | Eigen::SVDBase Base class of SVD algorithms. |
class | Eigen::SwapWrapper |
class | Eigen::Transform Represents an homogeneous transformation in a N dimensional space. |
class | Eigen::Translation Represents a translation transformation. |
class | Eigen::Transpose Expression of the transpose of a matrix. |
class | Eigen::Transpose< TranspositionsBase< TranspositionsDerived > > |
class | Eigen::TransposeImpl |
class | Eigen::TransposeImpl< MatrixType, Dense > |
class | Eigen::TransposeImpl< MatrixType, Sparse > |
class | Eigen::Transpositions Represents a sequence of transpositions (row/column interchange) |
class | Eigen::TranspositionsBase |
struct | Eigen::TranspositionsShape |
struct | Eigen::TranspositionsStorage |
class | Eigen::TranspositionsWrapper |
class | Eigen::TriangularBase Base class for triangular part in a matrix. |
struct | Eigen::TriangularShape |
class | Eigen::TriangularView Expression of a triangular part in a matrix. |
class | Eigen::TriangularViewImpl |
class | Eigen::TriangularViewImpl< _MatrixType, _Mode, Dense > Base class for a triangular part in a dense matrix. |
class | Eigen::TriangularViewImpl< MatrixType, Mode, Sparse > Base class for a triangular part in a sparse matrix. |
class | Eigen::Tridiagonalization Tridiagonal decomposition of a selfadjoint matrix. |
class | Eigen::Triplet A small structure to hold a non zero as a triplet (i,j,value). |
class | Eigen::UmfPackLU A sparse LU factorization and solver based on UmfPack. |
class | Eigen::UniformScaling Represents a generic uniform scaling transformation. |
class | Eigen::VectorBlock Expression of a fixed-size or dynamic-size sub-vector. |
class | Eigen::VectorwiseOp Pseudo expression providing broadcasting and partial reduction operations. |
class | Eigen::WithFormat Pseudo expression providing matrix output with given format. |
Types¶
Name | |
---|---|
enum | CholmodMode |
enum | @303 |
enum | @299 |
enum | @300 |
enum | UpLoType { Lower =0x1, Upper =0x2, UnitDiag =0x4, ZeroDiag =0x8, UnitLower =UnitDiag |
enum | AlignmentType |
enum | DirectionType |
enum | TraversalType |
enum | UnrollingType |
enum | SpecializedType |
enum | StorageOptions |
enum | SideType |
enum | NaNPropagationOptions |
enum | NoChange_t |
enum | Sequential_t |
enum | Default_t |
enum | AmbiVectorMode |
enum | AccessorLevels |
enum | DecompositionOptions { Pivoting = 0x01, NoPivoting = 0x02, ComputeFullU = 0x04, ComputeThinU = 0x08, ComputeFullV = 0x10, ComputeThinV = 0x20, EigenvaluesOnly = 0x40, ComputeEigenvectors = 0x80, EigVecMask = EigenvaluesOnly |
enum | QRPreconditioners |
enum | ComputationInfo |
enum | TransformTraits { Isometry = 0x1, Affine = 0x2, AffineCompact = 0x10 |
enum | ProductImplType |
enum | Action |
enum | AutoSize_t |
enum | SimplicialCholeskyMode |
enum | @833 |
typedef Array< int, 2, 2 > | Array22i |
typedef Array< int, 2, 1 > | Array2i |
typedef Array< int, 3, 3 > | Array33i |
typedef Array< int, 3, 1 > | Array3i |
typedef Array< int, 4, 4 > | Array44i |
typedef Array< int, 4, 1 > | Array4i |
typedef Array< int, Dynamic, Dynamic > | ArrayXXi |
typedef Array< int, Dynamic, 1 > | ArrayXi |
typedef Array< int, 2, Dynamic > | Array2Xi |
typedef Array< int, Dynamic, 2 > | ArrayX2i |
typedef Array< int, 3, Dynamic > | Array3Xi |
typedef Array< int, Dynamic, 3 > | ArrayX3i |
typedef Array< int, 4, Dynamic > | Array4Xi |
typedef Array< int, Dynamic, 4 > | ArrayX4i |
typedef Array< float, 2, 2 > | Array22f |
typedef Array< float, 2, 1 > | Array2f |
typedef Array< float, 3, 3 > | Array33f |
typedef Array< float, 3, 1 > | Array3f |
typedef Array< float, 4, 4 > | Array44f |
typedef Array< float, 4, 1 > | Array4f |
typedef Array< float, Dynamic, Dynamic > | ArrayXXf |
typedef Array< float, Dynamic, 1 > | ArrayXf |
typedef Array< float, 2, Dynamic > | Array2Xf |
typedef Array< float, Dynamic, 2 > | ArrayX2f |
typedef Array< float, 3, Dynamic > | Array3Xf |
typedef Array< float, Dynamic, 3 > | ArrayX3f |
typedef Array< float, 4, Dynamic > | Array4Xf |
typedef Array< float, Dynamic, 4 > | ArrayX4f |
typedef Array< double, 2, 2 > | Array22d |
typedef Array< double, 2, 1 > | Array2d |
typedef Array< double, 3, 3 > | Array33d |
typedef Array< double, 3, 1 > | Array3d |
typedef Array< double, 4, 4 > | Array44d |
typedef Array< double, 4, 1 > | Array4d |
typedef Array< double, Dynamic, Dynamic > | ArrayXXd |
typedef Array< double, Dynamic, 1 > | ArrayXd |
typedef Array< double, 2, Dynamic > | Array2Xd |
typedef Array< double, Dynamic, 2 > | ArrayX2d |
typedef Array< double, 3, Dynamic > | Array3Xd |
typedef Array< double, Dynamic, 3 > | ArrayX3d |
typedef Array< double, 4, Dynamic > | Array4Xd |
typedef Array< double, Dynamic, 4 > | ArrayX4d |
typedef Array< std::complex< float >, 2, 2 > | Array22cf |
typedef Array< std::complex< float >, 2, 1 > | Array2cf |
typedef Array< std::complex< float >, 3, 3 > | Array33cf |
typedef Array< std::complex< float >, 3, 1 > | Array3cf |
typedef Array< std::complex< float >, 4, 4 > | Array44cf |
typedef Array< std::complex< float >, 4, 1 > | Array4cf |
typedef Array< std::complex< float >, Dynamic, Dynamic > | ArrayXXcf |
typedef Array< std::complex< float >, Dynamic, 1 > | ArrayXcf |
typedef Array< std::complex< float >, 2, Dynamic > | Array2Xcf |
typedef Array< std::complex< float >, Dynamic, 2 > | ArrayX2cf |
typedef Array< std::complex< float >, 3, Dynamic > | Array3Xcf |
typedef Array< std::complex< float >, Dynamic, 3 > | ArrayX3cf |
typedef Array< std::complex< float >, 4, Dynamic > | Array4Xcf |
typedef Array< std::complex< float >, Dynamic, 4 > | ArrayX4cf |
typedef Array< std::complex< double >, 2, 2 > | Array22cd |
typedef Array< std::complex< double >, 2, 1 > | Array2cd |
typedef Array< std::complex< double >, 3, 3 > | Array33cd |
typedef Array< std::complex< double >, 3, 1 > | Array3cd |
typedef Array< std::complex< double >, 4, 4 > | Array44cd |
typedef Array< std::complex< double >, 4, 1 > | Array4cd |
typedef Array< std::complex< double >, Dynamic, Dynamic > | ArrayXXcd |
typedef Array< std::complex< double >, Dynamic, 1 > | ArrayXcd |
typedef Array< std::complex< double >, 2, Dynamic > | Array2Xcd |
typedef Array< std::complex< double >, Dynamic, 2 > | ArrayX2cd |
typedef Array< std::complex< double >, 3, Dynamic > | Array3Xcd |
typedef Array< std::complex< double >, Dynamic, 3 > | ArrayX3cd |
typedef Array< std::complex< double >, 4, Dynamic > | Array4Xcd |
typedef Array< std::complex< double >, Dynamic, 4 > | ArrayX4cd |
typedef Matrix< int, 2, 2 > | Matrix2i |
typedef Matrix< int, 2, 1 > | Vector2i |
typedef Matrix< int, 1, 2 > | RowVector2i |
typedef Matrix< int, 3, 3 > | Matrix3i |
typedef Matrix< int, 3, 1 > | Vector3i |
typedef Matrix< int, 1, 3 > | RowVector3i |
typedef Matrix< int, 4, 4 > | Matrix4i |
typedef Matrix< int, 4, 1 > | Vector4i |
typedef Matrix< int, 1, 4 > | RowVector4i |
typedef Matrix< int, Dynamic, Dynamic > | MatrixXi |
typedef Matrix< int, Dynamic, 1 > | VectorXi |
typedef Matrix< int, 1, Dynamic > | RowVectorXi |
typedef Matrix< int, 2, Dynamic > | Matrix2Xi |
typedef Matrix< int, Dynamic, 2 > | MatrixX2i |
typedef Matrix< int, 3, Dynamic > | Matrix3Xi |
typedef Matrix< int, Dynamic, 3 > | MatrixX3i |
typedef Matrix< int, 4, Dynamic > | Matrix4Xi |
typedef Matrix< int, Dynamic, 4 > | MatrixX4i |
typedef Matrix< float, 2, 2 > | Matrix2f |
typedef Matrix< float, 2, 1 > | Vector2f |
typedef Matrix< float, 1, 2 > | RowVector2f |
typedef Matrix< float, 3, 3 > | Matrix3f |
typedef Matrix< float, 3, 1 > | Vector3f |
typedef Matrix< float, 1, 3 > | RowVector3f |
typedef Matrix< float, 4, 4 > | Matrix4f |
typedef Matrix< float, 4, 1 > | Vector4f |
typedef Matrix< float, 1, 4 > | RowVector4f |
typedef Matrix< float, Dynamic, Dynamic > | MatrixXf |
typedef Matrix< float, Dynamic, 1 > | VectorXf |
typedef Matrix< float, 1, Dynamic > | RowVectorXf |
typedef Matrix< float, 2, Dynamic > | Matrix2Xf |
typedef Matrix< float, Dynamic, 2 > | MatrixX2f |
typedef Matrix< float, 3, Dynamic > | Matrix3Xf |
typedef Matrix< float, Dynamic, 3 > | MatrixX3f |
typedef Matrix< float, 4, Dynamic > | Matrix4Xf |
typedef Matrix< float, Dynamic, 4 > | MatrixX4f |
typedef Matrix< double, 2, 2 > | Matrix2d |
typedef Matrix< double, 2, 1 > | Vector2d |
typedef Matrix< double, 1, 2 > | RowVector2d |
typedef Matrix< double, 3, 3 > | Matrix3d |
typedef Matrix< double, 3, 1 > | Vector3d |
typedef Matrix< double, 1, 3 > | RowVector3d |
typedef Matrix< double, 4, 4 > | Matrix4d |
typedef Matrix< double, 4, 1 > | Vector4d |
typedef Matrix< double, 1, 4 > | RowVector4d |
typedef Matrix< double, Dynamic, Dynamic > | MatrixXd |
typedef Matrix< double, Dynamic, 1 > | VectorXd |
typedef Matrix< double, 1, Dynamic > | RowVectorXd |
typedef Matrix< double, 2, Dynamic > | Matrix2Xd |
typedef Matrix< double, Dynamic, 2 > | MatrixX2d |
typedef Matrix< double, 3, Dynamic > | Matrix3Xd |
typedef Matrix< double, Dynamic, 3 > | MatrixX3d |
typedef Matrix< double, 4, Dynamic > | Matrix4Xd |
typedef Matrix< double, Dynamic, 4 > | MatrixX4d |
typedef Matrix< std::complex< float >, 2, 2 > | Matrix2cf |
typedef Matrix< std::complex< float >, 2, 1 > | Vector2cf |
typedef Matrix< std::complex< float >, 1, 2 > | RowVector2cf |
typedef Matrix< std::complex< float >, 3, 3 > | Matrix3cf |
typedef Matrix< std::complex< float >, 3, 1 > | Vector3cf |
typedef Matrix< std::complex< float >, 1, 3 > | RowVector3cf |
typedef Matrix< std::complex< float >, 4, 4 > | Matrix4cf |
typedef Matrix< std::complex< float >, 4, 1 > | Vector4cf |
typedef Matrix< std::complex< float >, 1, 4 > | RowVector4cf |
typedef Matrix< std::complex< float >, Dynamic, Dynamic > | MatrixXcf |
typedef Matrix< std::complex< float >, Dynamic, 1 > | VectorXcf |
typedef Matrix< std::complex< float >, 1, Dynamic > | RowVectorXcf |
typedef Matrix< std::complex< float >, 2, Dynamic > | Matrix2Xcf |
typedef Matrix< std::complex< float >, Dynamic, 2 > | MatrixX2cf |
typedef Matrix< std::complex< float >, 3, Dynamic > | Matrix3Xcf |
typedef Matrix< std::complex< float >, Dynamic, 3 > | MatrixX3cf |
typedef Matrix< std::complex< float >, 4, Dynamic > | Matrix4Xcf |
typedef Matrix< std::complex< float >, Dynamic, 4 > | MatrixX4cf |
typedef Matrix< std::complex< double >, 2, 2 > | Matrix2cd |
typedef Matrix< std::complex< double >, 2, 1 > | Vector2cd |
typedef Matrix< std::complex< double >, 1, 2 > | RowVector2cd |
typedef Matrix< std::complex< double >, 3, 3 > | Matrix3cd |
typedef Matrix< std::complex< double >, 3, 1 > | Vector3cd |
typedef Matrix< std::complex< double >, 1, 3 > | RowVector3cd |
typedef Matrix< std::complex< double >, 4, 4 > | Matrix4cd |
typedef Matrix< std::complex< double >, 4, 1 > | Vector4cd |
typedef Matrix< std::complex< double >, 1, 4 > | RowVector4cd |
typedef Matrix< std::complex< double >, Dynamic, Dynamic > | MatrixXcd |
typedef Matrix< std::complex< double >, Dynamic, 1 > | VectorXcd |
typedef Matrix< std::complex< double >, 1, Dynamic > | RowVectorXcd |
typedef Matrix< std::complex< double >, 2, Dynamic > | Matrix2Xcd |
typedef Matrix< std::complex< double >, Dynamic, 2 > | MatrixX2cd |
typedef Matrix< std::complex< double >, 3, Dynamic > | Matrix3Xcd |
typedef Matrix< std::complex< double >, Dynamic, 3 > | MatrixX3cd |
typedef Matrix< std::complex< double >, 4, Dynamic > | Matrix4Xcd |
typedef Matrix< std::complex< double >, Dynamic, 4 > | MatrixX4cd |
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE | DenseIndex |
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE | Index The Index type as used for the API. |
typedef std::complex< double > | dcomplex |
typedef std::complex< float > | scomplex |
typedef int | BlasIndex |
typedef AlignedBox< int, 1 > | AlignedBox1i |
typedef AlignedBox< int, 2 > | AlignedBox2i |
typedef AlignedBox< int, 3 > | AlignedBox3i |
typedef AlignedBox< int, 4 > | AlignedBox4i |
typedef AlignedBox< int, Dynamic > | AlignedBoxXi |
typedef AlignedBox< float, 1 > | AlignedBox1f |
typedef AlignedBox< float, 2 > | AlignedBox2f |
typedef AlignedBox< float, 3 > | AlignedBox3f |
typedef AlignedBox< float, 4 > | AlignedBox4f |
typedef AlignedBox< float, Dynamic > | AlignedBoxXf |
typedef AlignedBox< double, 1 > | AlignedBox1d |
typedef AlignedBox< double, 2 > | AlignedBox2d |
typedef AlignedBox< double, 3 > | AlignedBox3d |
typedef AlignedBox< double, 4 > | AlignedBox4d |
typedef AlignedBox< double, Dynamic > | AlignedBoxXd |
typedef AngleAxis< float > | AngleAxisf |
typedef AngleAxis< double > | AngleAxisd |
typedef Quaternion< float > | Quaternionf |
typedef Quaternion< double > | Quaterniond |
typedef Map< Quaternion< float >, 0 > | QuaternionMapf |
typedef Map< Quaternion< double >, 0 > | QuaternionMapd |
typedef Map< Quaternion< float >, Aligned > | QuaternionMapAlignedf |
typedef Map< Quaternion< double >, Aligned > | QuaternionMapAlignedd |
typedef Rotation2D< float > | Rotation2Df |
typedef Rotation2D< double > | Rotation2Dd |
typedef DiagonalMatrix< float, 2 > | AlignedScaling2f |
typedef DiagonalMatrix< double, 2 > | AlignedScaling2d |
typedef DiagonalMatrix< float, 3 > | AlignedScaling3f |
typedef DiagonalMatrix< double, 3 > | AlignedScaling3d |
typedef Transform< float, 2, Isometry > | Isometry2f |
typedef Transform< float, 3, Isometry > | Isometry3f |
typedef Transform< double, 2, Isometry > | Isometry2d |
typedef Transform< double, 3, Isometry > | Isometry3d |
typedef Transform< float, 2, Affine > | Affine2f |
typedef Transform< float, 3, Affine > | Affine3f |
typedef Transform< double, 2, Affine > | Affine2d |
typedef Transform< double, 3, Affine > | Affine3d |
typedef Transform< float, 2, AffineCompact > | AffineCompact2f |
typedef Transform< float, 3, AffineCompact > | AffineCompact3f |
typedef Transform< double, 2, AffineCompact > | AffineCompact2d |
typedef Transform< double, 3, AffineCompact > | AffineCompact3d |
typedef Transform< float, 2, Projective > | Projective2f |
typedef Transform< float, 3, Projective > | Projective3f |
typedef Transform< double, 2, Projective > | Projective2d |
typedef Transform< double, 3, Projective > | Projective3d |
typedef Translation< float, 2 > | Translation2f |
typedef Translation< double, 2 > | Translation2d |
typedef Translation< float, 3 > | Translation3f |
typedef Translation< double, 3 > | Translation3d |
Functions¶
Name | |
---|---|
template <typename _Scalar ,int _Options,typename _StorageIndex > cholmod_sparse |
viewAsCholmod(Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > > mat) |
template <typename _Scalar ,int _Options,typename _Index > const cholmod_sparse |
viewAsCholmod(const SparseMatrix< _Scalar, _Options, _Index > & mat) |
template <typename _Scalar ,int _Options,typename _Index > const cholmod_sparse |
viewAsCholmod(const SparseVector< _Scalar, _Options, _Index > & mat) |
template <typename _Scalar ,int _Options,typename _Index ,unsigned int UpLo> cholmod_sparse |
viewAsCholmod(const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > & mat) |
template <typename Derived > cholmod_dense |
viewAsCholmod(MatrixBase< Derived > & mat) |
template <typename Scalar ,int Flags,typename StorageIndex > MappedSparseMatrix< Scalar, Flags, StorageIndex > |
viewAsEigen(cholmod_sparse & cm) |
template <typename FirstType ,typename SizeType ,typename IncrType > ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > |
seqN(FirstType first, SizeType size, IncrType incr) |
template <typename FirstType ,typename SizeType > ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > |
seqN(FirstType first, SizeType size) |
template <typename FirstType ,typename LastType > internal::enable_if<!(symbolic::is_symbolic< FirstType >::value |
|
template <typename FirstTypeDerived ,typename LastType > internal::enable_if< |
seq(const symbolic::BaseExpr< FirstTypeDerived > & f, LastType l) |
template <typename FirstType ,typename LastTypeDerived > internal::enable_if< |
seq(FirstType f, const symbolic::BaseExpr< LastTypeDerived > & l) |
template <typename FirstTypeDerived ,typename LastTypeDerived > ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > |
seq(const symbolic::BaseExpr< FirstTypeDerived > & f, const symbolic::BaseExpr< LastTypeDerived > & l) |
template <typename FirstType ,typename LastType ,typename IncrType > internal::enable_if<!(symbolic::is_symbolic< FirstType >::value |
|
template <typename FirstTypeDerived ,typename LastType ,typename IncrType > internal::enable_if< |
seq(const symbolic::BaseExpr< FirstTypeDerived > & f, LastType l, IncrType incr) |
template <typename FirstType ,typename LastTypeDerived ,typename IncrType > internal::enable_if< |
seq(FirstType f, const symbolic::BaseExpr< LastTypeDerived > & l, IncrType incr) |
template <typename FirstTypeDerived ,typename LastTypeDerived ,typename IncrType > ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > |
seq(const symbolic::BaseExpr< FirstTypeDerived > & f, const symbolic::BaseExpr< LastTypeDerived > & l, IncrType incr) |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived >(real ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived >(imag ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_conjugate_op< typename Derived::Scalar >, const Derived >(conj ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_inverse_op< typename Derived::Scalar >, const Derived >(inverse ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_sin_op< typename Derived::Scalar >, const Derived >(sin ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_cos_op< typename Derived::Scalar >, const Derived >(cos ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_tan_op< typename Derived::Scalar >, const Derived >(tan ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_atan_op< typename Derived::Scalar >, const Derived >(atan ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_asin_op< typename Derived::Scalar >, const Derived >(asin ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_acos_op< typename Derived::Scalar >, const Derived >(acos ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_sinh_op< typename Derived::Scalar >, const Derived >(sinh ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_cosh_op< typename Derived::Scalar >, const Derived >(cosh ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_tanh_op< typename Derived::Scalar >, const Derived >(tanh ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_logistic_op< typename Derived::Scalar >, const Derived >(logistic ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_lgamma_op< typename Derived::Scalar >, const Derived >(lgamma ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_digamma_op< typename Derived::Scalar >, const Derived >(digamma ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_erf_op< typename Derived::Scalar >, const Derived >(erf ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_erfc_op< typename Derived::Scalar >, const Derived >(erfc ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_ndtri_op< typename Derived::Scalar >, const Derived >(ndtri ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_exp_op< typename Derived::Scalar >, const Derived >(exp ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_expm1_op< typename Derived::Scalar >, const Derived >(expm1 ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_log_op< typename Derived::Scalar >, const Derived >(log ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_log1p_op< typename Derived::Scalar >, const Derived >(log1p ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_log10_op< typename Derived::Scalar >, const Derived >(log10 ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_log2_op< typename Derived::Scalar >, const Derived >(log2 ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived >(abs ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs2_op< typename Derived::Scalar >, const Derived >(abs2 ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived >(arg ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived >(sqrt ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_rsqrt_op< typename Derived::Scalar >, const Derived >(rsqrt ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_square_op< typename Derived::Scalar >, const Derived >(square ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_cube_op< typename Derived::Scalar >, const Derived >(cube ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_rint_op< typename Derived::Scalar >, const Derived >(rint ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_round_op< typename Derived::Scalar >, const Derived >(round ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_floor_op< typename Derived::Scalar >, const Derived >(floor ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_ceil_op< typename Derived::Scalar >, const Derived >(ceil ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_isnan_op< typename Derived::Scalar >, const Derived >(isnan ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_isinf_op< typename Derived::Scalar >, const Derived >(isinf ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_isfinite_op< typename Derived::Scalar >, const Derived >(isfinite ) const |
template <typename Derived > const |
Eigen::CwiseUnaryOp< Eigen::internal::scalar_sign_op< typename Derived::Scalar >, const Derived >(sign ) const |
template <typename MatrixDerived ,typename PermutationDerived > EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > |
operator*(const MatrixBase< MatrixDerived > & matrix, const PermutationBase< PermutationDerived > & permutation) |
template <typename PermutationDerived ,typename MatrixDerived > EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > |
operator*(const PermutationBase< PermutationDerived > & permutation, const MatrixBase< MatrixDerived > & matrix) |
std::ptrdiff_t | l1CacheSize() |
std::ptrdiff_t | l2CacheSize() |
std::ptrdiff_t | l3CacheSize() |
void | setCpuCacheSizes(std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3) |
void | initParallel() |
int | nbThreads() |
void | setNbThreads(int v) |
template <typename MatrixDerived ,typename TranspositionsDerived > EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > |
operator*(const MatrixBase< MatrixDerived > & matrix, const TranspositionsBase< TranspositionsDerived > & transpositions) |
template <typename TranspositionsDerived ,typename MatrixDerived > EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > |
operator*(const TranspositionsBase< TranspositionsDerived > & transpositions, const MatrixBase< MatrixDerived > & matrix) |
const char * | SimdInstructionSetsInUse(void ) |
const symbolic::AddExpr< symbolic::SymbolExpr< internal::symbolic_last_tag >, symbolic::ValueExpr< Eigen::internal::FixedInt< 1 > > > | lastp1(last+fix< 1 > ()) |
template <int N> internal::FixedInt< N > |
fix() |
template <int N,typename T > internal::VariableAndFixedInt< N > |
fix(T val) |
UniformScaling< float > | Scaling(float s) |
UniformScaling< double > | Scaling(double s) |
template <typename RealScalar > UniformScaling< std::complex< RealScalar > > |
Scaling(const std::complex< RealScalar > & s) |
template <typename Scalar > DiagonalMatrix< Scalar, 2 > |
Scaling(const Scalar & sx, const Scalar & sy) |
template <typename Scalar > DiagonalMatrix< Scalar, 3 > |
Scaling(const Scalar & sx, const Scalar & sy, const Scalar & sz) |
template <typename Derived > const DiagonalWrapper< const Derived > |
Scaling(const MatrixBase< Derived > & coeffs) |
template <typename Derived ,typename OtherDerived > internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type |
umeyama(const MatrixBase< Derived > & src, const MatrixBase< OtherDerived > & dst, bool with_scaling =true) Returns the transformation between two point sets. |
template <typename OtherDerived ,typename VectorsType ,typename CoeffsType ,int Side> internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type |
operator*(const MatrixBase< OtherDerived > & other, const HouseholderSequence< VectorsType, CoeffsType, Side > & h) Computes the product of a matrix with a Householder sequence. |
template <typename VectorsType ,typename CoeffsType > HouseholderSequence< VectorsType, CoeffsType > |
householderSequence(const VectorsType & v, const CoeffsType & h) Convenience function for constructing a Householder sequence. |
template <typename VectorsType ,typename CoeffsType > HouseholderSequence< VectorsType, CoeffsType, OnTheRight > |
rightHouseholderSequence(const VectorsType & v, const CoeffsType & h) Convenience function for constructing a Householder sequence. |
int | klu_solve(klu_symbolic * Symbolic, klu_numeric * Numeric, Index ldim, Index nrhs, double B[], klu_common * Common, double ) A sparse LU factorization and solver based on KLU. |
int | klu_solve(klu_symbolic * Symbolic, klu_numeric * Numeric, Index ldim, Index nrhs, std::complex< double > B[], klu_common * Common, std::complex< double > ) |
int | klu_tsolve(klu_symbolic * Symbolic, klu_numeric * Numeric, Index ldim, Index nrhs, double B[], klu_common * Common, double ) |
int | klu_tsolve(klu_symbolic * Symbolic, klu_numeric * Numeric, Index ldim, Index nrhs, std::complex< double > B[], klu_common * Common, std::complex< double > ) |
klu_numeric * | klu_factor(int Ap[], int Ai[], double Ax[], klu_symbolic * Symbolic, klu_common * Common, double ) |
klu_numeric * | klu_factor(int Ap[], int Ai[], std::complex< double > Ax[], klu_symbolic * Symbolic, klu_common * Common, std::complex< double > ) |
template <typename DenseDerived ,typename SparseDerived > EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > |
operator+(const MatrixBase< DenseDerived > & a, const SparseMatrixBase< SparseDerived > & b) |
template <typename SparseDerived ,typename DenseDerived > EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > |
operator+(const SparseMatrixBase< SparseDerived > & a, const MatrixBase< DenseDerived > & b) |
template <typename DenseDerived ,typename SparseDerived > EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > |
operator-(const MatrixBase< DenseDerived > & a, const SparseMatrixBase< SparseDerived > & b) |
template <typename SparseDerived ,typename DenseDerived > EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > |
operator-(const SparseMatrixBase< SparseDerived > & a, const MatrixBase< DenseDerived > & b) |
template <typename SparseDerived ,typename PermDerived > const Product< SparseDerived, PermDerived, AliasFreeProduct > |
operator*(const SparseMatrixBase< SparseDerived > & matrix, const PermutationBase< PermDerived > & perm) |
template <typename SparseDerived ,typename PermDerived > const Product< PermDerived, SparseDerived, AliasFreeProduct > |
operator*(const PermutationBase< PermDerived > & perm, const SparseMatrixBase< SparseDerived > & matrix) |
template <typename SparseDerived ,typename PermutationType > const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > |
operator*(const SparseMatrixBase< SparseDerived > & matrix, const InverseImpl< PermutationType, PermutationStorage > & tperm) |
template <typename SparseDerived ,typename PermutationType > const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > |
operator*(const InverseImpl< PermutationType, PermutationStorage > & tperm, const SparseMatrixBase< SparseDerived > & matrix) |
void | sgssvx(superlu_options_t * , SuperMatrix * , int * , int * , int * , char * , float * , float * , SuperMatrix * , SuperMatrix * , void * , int , SuperMatrix * , SuperMatrix * , float * , float * , float * , float * , mem_usage_t * , SuperLUStat_t * , int * ) |
float | SuperLU_gssvx(superlu_options_t * options, SuperMatrix * A, int * perm_c, int * perm_r, int * etree, char * equed, float * R, float * C, SuperMatrix * L, SuperMatrix * U, void * work, int lwork, SuperMatrix * B, SuperMatrix * X, float * recip_pivot_growth, float * rcond, float * ferr, float * berr, SuperLUStat_t * stats, int * info, float ) |
void | cgssvx(superlu_options_t * , SuperMatrix * , int * , int * , int * , char * , float * , float * , SuperMatrix * , SuperMatrix * , void * , int , SuperMatrix * , SuperMatrix * , float * , float * , float * , float * , mem_usage_t * , SuperLUStat_t * , int * ) |
float | SuperLU_gssvx(superlu_options_t * options, SuperMatrix * A, int * perm_c, int * perm_r, int * etree, char * equed, float * R, float * C, SuperMatrix * L, SuperMatrix * U, void * work, int lwork, SuperMatrix * B, SuperMatrix * X, float * recip_pivot_growth, float * rcond, float * ferr, float * berr, SuperLUStat_t * stats, int * info, std::complex< float > ) |
void | dgssvx(superlu_options_t * , SuperMatrix * , int * , int * , int * , char * , double * , double * , SuperMatrix * , SuperMatrix * , void * , int , SuperMatrix * , SuperMatrix * , double * , double * , double * , double * , mem_usage_t * , SuperLUStat_t * , int * ) |
float | SuperLU_gssvx(superlu_options_t * options, SuperMatrix * A, int * perm_c, int * perm_r, int * etree, char * equed, double * R, double * C, SuperMatrix * L, SuperMatrix * U, void * work, int lwork, SuperMatrix * B, SuperMatrix * X, double * recip_pivot_growth, double * rcond, double * ferr, double * berr, SuperLUStat_t * stats, int * info, double ) |
void | zgssvx(superlu_options_t * , SuperMatrix * , int * , int * , int * , char * , double * , double * , SuperMatrix * , SuperMatrix * , void * , int , SuperMatrix * , SuperMatrix * , double * , double * , double * , double * , mem_usage_t * , SuperLUStat_t * , int * ) |
float | SuperLU_gssvx(superlu_options_t * options, SuperMatrix * A, int * perm_c, int * perm_r, int * etree, char * equed, double * R, double * C, SuperMatrix * L, SuperMatrix * U, void * work, int lwork, SuperMatrix * B, SuperMatrix * X, double * recip_pivot_growth, double * rcond, double * ferr, double * berr, SuperLUStat_t * stats, int * info, std::complex< double > ) |
void | umfpack_defaults(double control[UMFPACK_CONTROL], double , int ) |
void | umfpack_defaults(double control[UMFPACK_CONTROL], std::complex< double > , int ) |
void | umfpack_defaults(double control[UMFPACK_CONTROL], double , SuiteSparse_long ) |
void | umfpack_defaults(double control[UMFPACK_CONTROL], std::complex< double > , SuiteSparse_long ) |
void | umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double , int ) |
void | umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double > , int ) |
void | umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double , SuiteSparse_long ) |
void | umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double > , SuiteSparse_long ) |
void | umfpack_report_status(double control[UMFPACK_CONTROL], int status, double , int ) |
void | umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex< double > , int ) |
void | umfpack_report_status(double control[UMFPACK_CONTROL], int status, double , SuiteSparse_long ) |
void | umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex< double > , SuiteSparse_long ) |
void | umfpack_report_control(double control[UMFPACK_CONTROL], double , int ) |
void | umfpack_report_control(double control[UMFPACK_CONTROL], std::complex< double > , int ) |
void | umfpack_report_control(double control[UMFPACK_CONTROL], double , SuiteSparse_long ) |
void | umfpack_report_control(double control[UMFPACK_CONTROL], std::complex< double > , SuiteSparse_long ) |
void | umfpack_free_numeric(void ** Numeric, double , int ) |
void | umfpack_free_numeric(void ** Numeric, std::complex< double > , int ) |
void | umfpack_free_numeric(void ** Numeric, double , SuiteSparse_long ) |
void | umfpack_free_numeric(void ** Numeric, std::complex< double > , SuiteSparse_long ) |
void | umfpack_free_symbolic(void ** Symbolic, double , int ) |
void | umfpack_free_symbolic(void ** Symbolic, std::complex< double > , int ) |
void | umfpack_free_symbolic(void ** Symbolic, double , SuiteSparse_long ) |
void | umfpack_free_symbolic(void ** Symbolic, std::complex< double > , SuiteSparse_long ) |
int | umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void ** Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const std::complex< double > Ax[], void ** Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void ** Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void ** Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_numeric(const int Ap[], const int Ai[], const double Ax[], void * Symbolic, void ** Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_numeric(const int Ap[], const int Ai[], const std::complex< double > Ax[], void * Symbolic, void ** Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void * Symbolic, void ** Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void * Symbolic, void ** Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_solve(int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void * Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_solve(int sys, const int Ap[], const int Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void * Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], double X[], const double B[], void * Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
SuiteSparse_long | umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void * Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) |
int | umfpack_get_lunz(int * lnz, int * unz, int * n_row, int * n_col, int * nz_udiag, void * Numeric, double ) |
int | umfpack_get_lunz(int * lnz, int * unz, int * n_row, int * n_col, int * nz_udiag, void * Numeric, std::complex< double > ) |
SuiteSparse_long | umfpack_get_lunz(SuiteSparse_long * lnz, SuiteSparse_long * unz, SuiteSparse_long * n_row, SuiteSparse_long * n_col, SuiteSparse_long * nz_udiag, void * Numeric, double ) |
SuiteSparse_long | umfpack_get_lunz(SuiteSparse_long * lnz, SuiteSparse_long * unz, SuiteSparse_long * n_row, SuiteSparse_long * n_col, SuiteSparse_long * nz_udiag, void * Numeric, std::complex< double > ) |
int | umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int * do_recip, double Rs[], void * Numeric) |
int | umfpack_get_numeric(int Lp[], int Lj[], std::complex< double > Lx[], int Up[], int Ui[], std::complex< double > Ux[], int P[], int Q[], std::complex< double > Dx[], int * do_recip, double Rs[], void * Numeric) |
SuiteSparse_long | umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long * do_recip, double Rs[], void * Numeric) |
SuiteSparse_long | umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex< double > Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex< double > Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], std::complex< double > Dx[], SuiteSparse_long * do_recip, double Rs[], void * Numeric) |
int | umfpack_get_determinant(double * Mx, double * Ex, void * NumericHandle, double User_Info[UMFPACK_INFO], int ) |
int | umfpack_get_determinant(std::complex< double > * Mx, double * Ex, void * NumericHandle, double User_Info[UMFPACK_INFO], int ) |
SuiteSparse_long | umfpack_get_determinant(double * Mx, double * Ex, void * NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long ) |
SuiteSparse_long | umfpack_get_determinant(std::complex< double > * Mx, double * Ex, void * NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long ) |
Attributes¶
Name | |
---|---|
EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & | exponents |
const int | Dynamic |
const int | DynamicIndex |
const int | UndefinedIncr |
const int | Infinity |
const int | HugeCost |
const unsigned int | RowMajorBit |
const unsigned int | EvalBeforeNestingBit |
EIGEN_DEPRECATED const unsigned int | EvalBeforeAssigningBit |
const unsigned int | PacketAccessBit |
const unsigned int | ActualPacketAccessBit |
const unsigned int | LinearAccessBit |
const unsigned int | LvalueBit |
const unsigned int | DirectAccessBit |
EIGEN_DEPRECATED const unsigned int | AlignedBit |
const unsigned int | NestByRefBit |
const unsigned int | NoPreferredStorageOrderBit |
const unsigned int | CompressedAccessBit |
const unsigned int | HereditaryBits |
const symbolic::SymbolExpr< internal::symbolic_last_tag > | last |
const Eigen::internal::all_t | all |
const int | AutoOrder |
const int | CoherentAccessPattern |
const int | InnerRandomAccessPattern |
const int | OuterRandomAccessPattern |
const int | RandomAccessPattern |
Types Documentation¶
enum CholmodMode¶
Enumerator | Value | Description |
---|---|---|
CholmodAuto | ||
CholmodSimplicialLLt | ||
CholmodSupernodalLLt | ||
CholmodLDLt |
enum @303¶
Enumerator | Value | Description |
---|---|---|
Large | 2 | |
Small | 3 |
enum @299¶
Enumerator | Value | Description |
---|---|---|
DontAlignCols | 1 |
enum @300¶
Enumerator | Value | Description |
---|---|---|
StreamPrecision | -1 | |
FullPrecision | -2 |
enum UpLoType¶
Enumerator | Value | Description |
---|---|---|
Lower | =0x1 | View matrix as a lower triangular matrix. |
Upper | =0x2 | View matrix as an upper triangular matrix. |
UnitDiag | =0x4 | Matrix has ones on the diagonal; to be used in combination with Lower or Upper. |
ZeroDiag | =0x8 | Matrix has zeros on the diagonal; to be used in combination with Lower or Upper. |
UnitLower | =UnitDiag | Lower |
UnitUpper | =UnitDiag | Upper |
StrictlyLower | =ZeroDiag | Lower |
StrictlyUpper | =ZeroDiag | Upper |
SelfAdjoint | =0x10 | Used in BandMatrix and SelfAdjointView to indicate that the matrix is self-adjoint. |
Symmetric | =0x20 | Used to support symmetric, non-selfadjoint, complex matrices. |
Enum containing possible values for the Mode
or UpLo
parameter of MatrixBase::selfadjointView() and MatrixBase::triangularView(), and selfadjoint solvers.
enum AlignmentType¶
Enumerator | Value | Description |
---|---|---|
Unaligned | =0 | Data pointer has no specific alignment. |
Aligned8 | =8 | Data pointer is aligned on a 8 bytes boundary. |
Aligned16 | =16 | Data pointer is aligned on a 16 bytes boundary. |
Aligned32 | =32 | Data pointer is aligned on a 32 bytes boundary. |
Aligned64 | =64 | Data pointer is aligned on a 64 bytes boundary. |
Aligned128 | =128 | Data pointer is aligned on a 128 bytes boundary. |
AlignedMask | =255 | |
Aligned | =16 | |
AlignedMax | Unaligned |
Enum for indicating whether a buffer is aligned or not.
enum DirectionType¶
Enumerator | Value | Description |
---|---|---|
Vertical | For Reverse, all columns are reversed; for PartialReduxExpr and VectorwiseOp, act on columns. | |
Horizontal | For Reverse, all rows are reversed; for PartialReduxExpr and VectorwiseOp, act on rows. | |
BothDirections | For Reverse, both rows and columns are reversed; not used for PartialReduxExpr and VectorwiseOp. |
Enum containing possible values for the Direction
parameter of Reverse, PartialReduxExpr and VectorwiseOp.
enum TraversalType¶
Enumerator | Value | Description |
---|---|---|
DefaultTraversal | ||
LinearTraversal | ||
InnerVectorizedTraversal | ||
LinearVectorizedTraversal | ||
SliceVectorizedTraversal | ||
InvalidTraversal | ||
AllAtOnceTraversal |
enum UnrollingType¶
Enumerator | Value | Description |
---|---|---|
NoUnrolling | ||
InnerUnrolling | ||
CompleteUnrolling |
enum SpecializedType¶
Enumerator | Value | Description |
---|---|---|
Specialized | ||
BuiltIn |
enum StorageOptions¶
Enumerator | Value | Description |
---|---|---|
ColMajor | 0 | Storage order is column major (see TopicStorageOrders). |
RowMajor | 0x1 | Storage order is row major (see TopicStorageOrders). |
AutoAlign | 0 | Align the matrix itself if it is vectorizable fixed-size |
DontAlign | 0x2 | Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be requested to be aligned) |
Enum containing possible values for the _Options
template parameter of Matrix, Array and BandMatrix.
enum SideType¶
Enumerator | Value | Description |
---|---|---|
OnTheLeft | 1 | Apply transformation on the left. |
OnTheRight | 2 | Apply transformation on the right. |
Enum for specifying whether to apply or solve on the left or right.
enum NaNPropagationOptions¶
Enumerator | Value | Description |
---|---|---|
PropagateFast | 0 | Implementation defined behavior if NaNs are present. |
PropagateNaN | Always propagate NaNs. | |
PropagateNumbers | Always propagate not-NaNs. |
Enum for specifying NaN-propagation behavior, e.g. for coeff-wise min/max.
enum NoChange_t¶
Enumerator | Value | Description |
---|---|---|
NoChange |
enum Sequential_t¶
Enumerator | Value | Description |
---|---|---|
Sequential |
enum Default_t¶
Enumerator | Value | Description |
---|---|---|
Default |
enum AmbiVectorMode¶
Enumerator | Value | Description |
---|---|---|
IsDense | 0 | |
IsSparse |
enum AccessorLevels¶
Enumerator | Value | Description |
---|---|---|
ReadOnlyAccessors | Read-only access via a member function. | |
WriteAccessors | Read/write access via member functions. | |
DirectAccessors | Direct read-only access to the coefficients. | |
DirectWriteAccessors | Direct read/write access to the coefficients. |
Used as template parameter in DenseCoeffBase and MapBase to indicate which accessors should be provided.
enum DecompositionOptions¶
Enumerator | Value | Description |
---|---|---|
Pivoting | 0x01 | |
NoPivoting | 0x02 | |
ComputeFullU | 0x04 | Used in JacobiSVD to indicate that the square matrix U is to be computed. |
ComputeThinU | 0x08 | Used in JacobiSVD to indicate that the thin matrix U is to be computed. |
ComputeFullV | 0x10 | Used in JacobiSVD to indicate that the square matrix V is to be computed. |
ComputeThinV | 0x20 | Used in JacobiSVD to indicate that the thin matrix V is to be computed. |
EigenvaluesOnly | 0x40 | Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that only the eigenvalues are to be computed and not the eigenvectors. |
ComputeEigenvectors | 0x80 | Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that both the eigenvalues and the eigenvectors are to be computed. |
EigVecMask | EigenvaluesOnly | ComputeEigenvectors |
Ax_lBx | 0x100 | Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( Ax = \lambda B x \). |
ABx_lx | 0x200 | Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( ABx = \lambda x \). |
BAx_lx | 0x400 | Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( BAx = \lambda x \). |
GenEigMask | Ax_lBx | ABx_lx |
Enum with options to give to various decompositions.
enum QRPreconditioners¶
Enumerator | Value | Description |
---|---|---|
NoQRPreconditioner | Do not specify what is to be done if the SVD of a non-square matrix is asked for. | |
HouseholderQRPreconditioner | Use a QR decomposition without pivoting as the first step. | |
ColPivHouseholderQRPreconditioner | Use a QR decomposition with column pivoting as the first step. | |
FullPivHouseholderQRPreconditioner | Use a QR decomposition with full pivoting as the first step. |
Possible values for the QRPreconditioner
template parameter of JacobiSVD.
enum ComputationInfo¶
Enumerator | Value | Description |
---|---|---|
Success | 0 | Computation was successful. |
NumericalIssue | 1 | The provided data did not satisfy the prerequisites. |
NoConvergence | 2 | Iterative procedure did not converge. |
InvalidInput | 3 | The inputs are invalid, or the algorithm has been improperly called. When assertions are enabled, such errors trigger an assert. |
Enum for reporting the status of a computation.
enum TransformTraits¶
Enumerator | Value | Description |
---|---|---|
Isometry | 0x1 | Transformation is an isometry. |
Affine | 0x2 | Transformation is an affine transformation stored as a (Dim+1)^2 matrix whose last row is assumed to be [0 ... 0 1]. |
AffineCompact | 0x10 | Affine |
Projective | 0x20 | Transformation is a general projective transformation stored as a (Dim+1)^2 matrix. |
See: Transform, Hyperplane::transform().
Enum used to specify how a particular transformation is stored in a matrix.
enum ProductImplType¶
Enumerator | Value | Description |
---|---|---|
DefaultProduct | =0 | |
LazyProduct | ||
AliasFreeProduct | ||
CoeffBasedProductMode | ||
LazyCoeffBasedProductMode | ||
OuterProduct | ||
InnerProduct | ||
GemvProduct | ||
GemmProduct |
enum Action¶
Enumerator | Value | Description |
---|---|---|
GetAction | ||
SetAction |
enum AutoSize_t¶
Enumerator | Value | Description |
---|---|---|
AutoSize |
enum SimplicialCholeskyMode¶
Enumerator | Value | Description |
---|---|---|
SimplicialCholeskyLLT | ||
SimplicialCholeskyLDLT |
enum @833¶
Enumerator | Value | Description |
---|---|---|
StandardCompressedFormat | 2 | used by Ref |
typedef Array22i¶
typedef Array< int , 2 , 2 > Array22i;
typedef Array2i¶
typedef Array< int , 2 , 1> Array2i;
typedef Array33i¶
typedef Array< int , 3 , 3 > Array33i;
typedef Array3i¶
typedef Array< int , 3 , 1> Array3i;
typedef Array44i¶
typedef Array< int , 4 , 4 > Array44i;
typedef Array4i¶
typedef Array< int , 4 , 1> Array4i;
typedef ArrayXXi¶
typedef Array< int , Dynamic , Dynamic > ArrayXXi;
typedef ArrayXi¶
typedef Array< int , Dynamic , 1> ArrayXi;
typedef Array2Xi¶
typedef Array< int , 2 , Dynamic> Array2Xi;
typedef ArrayX2i¶
typedef Array< int , Dynamic, 2 > ArrayX2i;
typedef Array3Xi¶
typedef Array< int , 3 , Dynamic> Array3Xi;
typedef ArrayX3i¶
typedef Array< int , Dynamic, 3 > ArrayX3i;
typedef Array4Xi¶
typedef Array< int , 4 , Dynamic> Array4Xi;
typedef ArrayX4i¶
typedef Array< int , Dynamic, 4 > ArrayX4i;
typedef Array22f¶
typedef Array< float , 2 , 2 > Array22f;
typedef Array2f¶
typedef Array< float , 2 , 1> Array2f;
typedef Array33f¶
typedef Array< float , 3 , 3 > Array33f;
typedef Array3f¶
typedef Array< float , 3 , 1> Array3f;
typedef Array44f¶
typedef Array< float , 4 , 4 > Array44f;
typedef Array4f¶
typedef Array< float , 4 , 1> Array4f;
typedef ArrayXXf¶
typedef Array< float , Dynamic , Dynamic > ArrayXXf;
typedef ArrayXf¶
typedef Array< float , Dynamic , 1> ArrayXf;
typedef Array2Xf¶
typedef Array< float , 2 , Dynamic> Array2Xf;
typedef ArrayX2f¶
typedef Array< float , Dynamic, 2 > ArrayX2f;
typedef Array3Xf¶
typedef Array< float , 3 , Dynamic> Array3Xf;
typedef ArrayX3f¶
typedef Array< float , Dynamic, 3 > ArrayX3f;
typedef Array4Xf¶
typedef Array< float , 4 , Dynamic> Array4Xf;
typedef ArrayX4f¶
typedef Array< float , Dynamic, 4 > ArrayX4f;
typedef Array22d¶
typedef Array< double , 2 , 2 > Array22d;
typedef Array2d¶
typedef Array< double , 2 , 1> Array2d;
typedef Array33d¶
typedef Array< double , 3 , 3 > Array33d;
typedef Array3d¶
typedef Array< double , 3 , 1> Array3d;
typedef Array44d¶
typedef Array< double , 4 , 4 > Array44d;
typedef Array4d¶
typedef Array< double , 4 , 1> Array4d;
typedef ArrayXXd¶
typedef Array< double , Dynamic , Dynamic > ArrayXXd;
typedef ArrayXd¶
typedef Array< double , Dynamic , 1> ArrayXd;
typedef Array2Xd¶
typedef Array< double , 2 , Dynamic> Array2Xd;
typedef ArrayX2d¶
typedef Array< double , Dynamic, 2 > ArrayX2d;
typedef Array3Xd¶
typedef Array< double , 3 , Dynamic> Array3Xd;
typedef ArrayX3d¶
typedef Array< double , Dynamic, 3 > ArrayX3d;
typedef Array4Xd¶
typedef Array< double , 4 , Dynamic> Array4Xd;
typedef ArrayX4d¶
typedef Array< double , Dynamic, 4 > ArrayX4d;
typedef Array22cf¶
typedef Array< std::complex<float> , 2 , 2 > Array22cf;
typedef Array2cf¶
typedef Array< std::complex<float> , 2 , 1> Array2cf;
typedef Array33cf¶
typedef Array< std::complex<float> , 3 , 3 > Array33cf;
typedef Array3cf¶
typedef Array< std::complex<float> , 3 , 1> Array3cf;
typedef Array44cf¶
typedef Array< std::complex<float> , 4 , 4 > Array44cf;
typedef Array4cf¶
typedef Array< std::complex<float> , 4 , 1> Array4cf;
typedef ArrayXXcf¶
typedef Array< std::complex<float> , Dynamic , Dynamic > ArrayXXcf;
typedef ArrayXcf¶
typedef Array< std::complex<float> , Dynamic , 1> ArrayXcf;
typedef Array2Xcf¶
typedef Array< std::complex<float> , 2 , Dynamic> Array2Xcf;
typedef ArrayX2cf¶
typedef Array< std::complex<float> , Dynamic, 2 > ArrayX2cf;
typedef Array3Xcf¶
typedef Array< std::complex<float> , 3 , Dynamic> Array3Xcf;
typedef ArrayX3cf¶
typedef Array< std::complex<float> , Dynamic, 3 > ArrayX3cf;
typedef Array4Xcf¶
typedef Array< std::complex<float> , 4 , Dynamic> Array4Xcf;
typedef ArrayX4cf¶
typedef Array< std::complex<float> , Dynamic, 4 > ArrayX4cf;
typedef Array22cd¶
typedef Array< std::complex<double> , 2 , 2 > Array22cd;
typedef Array2cd¶
typedef Array< std::complex<double> , 2 , 1> Array2cd;
typedef Array33cd¶
typedef Array< std::complex<double> , 3 , 3 > Array33cd;
typedef Array3cd¶
typedef Array< std::complex<double> , 3 , 1> Array3cd;
typedef Array44cd¶
typedef Array< std::complex<double> , 4 , 4 > Array44cd;
typedef Array4cd¶
typedef Array< std::complex<double> , 4 , 1> Array4cd;
typedef ArrayXXcd¶
typedef Array< std::complex<double> , Dynamic , Dynamic > ArrayXXcd;
typedef ArrayXcd¶
typedef Array< std::complex<double> , Dynamic , 1> ArrayXcd;
typedef Array2Xcd¶
typedef Array< std::complex<double> , 2 , Dynamic> Array2Xcd;
typedef ArrayX2cd¶
typedef Array< std::complex<double> , Dynamic, 2 > ArrayX2cd;
typedef Array3Xcd¶
typedef Array< std::complex<double> , 3 , Dynamic> Array3Xcd;
typedef ArrayX3cd¶
typedef Array< std::complex<double> , Dynamic, 3 > ArrayX3cd;
typedef Array4Xcd¶
typedef Array< std::complex<double> , 4 , Dynamic> Array4Xcd;
typedef ArrayX4cd¶
typedef Array< std::complex<double> , Dynamic, 4 > ArrayX4cd;
typedef Matrix2i¶
typedef Matrix< int , 2 , 2 > Matrix2i;
typedef Vector2i¶
typedef Matrix< int , 2 , 1> Vector2i;
typedef RowVector2i¶
typedef Matrix< int , 1, 2 > RowVector2i;
typedef Matrix3i¶
typedef Matrix< int , 3 , 3 > Matrix3i;
typedef Vector3i¶
typedef Matrix< int , 3 , 1> Vector3i;
typedef RowVector3i¶
typedef Matrix< int , 1, 3 > RowVector3i;
typedef Matrix4i¶
typedef Matrix< int , 4 , 4 > Matrix4i;
typedef Vector4i¶
typedef Matrix< int , 4 , 1> Vector4i;
typedef RowVector4i¶
typedef Matrix< int , 1, 4 > RowVector4i;
typedef MatrixXi¶
typedef Matrix< int , Dynamic , Dynamic > MatrixXi;
typedef VectorXi¶
typedef Matrix< int , Dynamic , 1> VectorXi;
typedef RowVectorXi¶
typedef Matrix< int , 1, Dynamic > RowVectorXi;
typedef Matrix2Xi¶
typedef Matrix< int , 2 , Dynamic> Matrix2Xi;
typedef MatrixX2i¶
typedef Matrix< int , Dynamic, 2 > MatrixX2i;
typedef Matrix3Xi¶
typedef Matrix< int , 3 , Dynamic> Matrix3Xi;
typedef MatrixX3i¶
typedef Matrix< int , Dynamic, 3 > MatrixX3i;
typedef Matrix4Xi¶
typedef Matrix< int , 4 , Dynamic> Matrix4Xi;
typedef MatrixX4i¶
typedef Matrix< int , Dynamic, 4 > MatrixX4i;
typedef Matrix2f¶
typedef Matrix< float , 2 , 2 > Matrix2f;
typedef Vector2f¶
typedef Matrix< float , 2 , 1> Vector2f;
typedef RowVector2f¶
typedef Matrix< float , 1, 2 > RowVector2f;
typedef Matrix3f¶
typedef Matrix< float , 3 , 3 > Matrix3f;
typedef Vector3f¶
typedef Matrix< float , 3 , 1> Vector3f;
typedef RowVector3f¶
typedef Matrix< float , 1, 3 > RowVector3f;
typedef Matrix4f¶
typedef Matrix< float , 4 , 4 > Matrix4f;
typedef Vector4f¶
typedef Matrix< float , 4 , 1> Vector4f;
typedef RowVector4f¶
typedef Matrix< float , 1, 4 > RowVector4f;
typedef MatrixXf¶
typedef Matrix< float , Dynamic , Dynamic > MatrixXf;
typedef VectorXf¶
typedef Matrix< float , Dynamic , 1> VectorXf;
typedef RowVectorXf¶
typedef Matrix< float , 1, Dynamic > RowVectorXf;
typedef Matrix2Xf¶
typedef Matrix< float , 2 , Dynamic> Matrix2Xf;
typedef MatrixX2f¶
typedef Matrix< float , Dynamic, 2 > MatrixX2f;
typedef Matrix3Xf¶
typedef Matrix< float , 3 , Dynamic> Matrix3Xf;
typedef MatrixX3f¶
typedef Matrix< float , Dynamic, 3 > MatrixX3f;
typedef Matrix4Xf¶
typedef Matrix< float , 4 , Dynamic> Matrix4Xf;
typedef MatrixX4f¶
typedef Matrix< float , Dynamic, 4 > MatrixX4f;
typedef Matrix2d¶
typedef Matrix< double , 2 , 2 > Matrix2d;
typedef Vector2d¶
typedef Matrix< double , 2 , 1> Vector2d;
typedef RowVector2d¶
typedef Matrix< double , 1, 2 > RowVector2d;
typedef Matrix3d¶
typedef Matrix< double , 3 , 3 > Matrix3d;
typedef Vector3d¶
typedef Matrix< double , 3 , 1> Vector3d;
typedef RowVector3d¶
typedef Matrix< double , 1, 3 > RowVector3d;
typedef Matrix4d¶
typedef Matrix< double , 4 , 4 > Matrix4d;
typedef Vector4d¶
typedef Matrix< double , 4 , 1> Vector4d;
typedef RowVector4d¶
typedef Matrix< double , 1, 4 > RowVector4d;
typedef MatrixXd¶
typedef Matrix< double , Dynamic , Dynamic > MatrixXd;
typedef VectorXd¶
typedef Matrix< double , Dynamic , 1> VectorXd;
typedef RowVectorXd¶
typedef Matrix< double , 1, Dynamic > RowVectorXd;
typedef Matrix2Xd¶
typedef Matrix< double , 2 , Dynamic> Matrix2Xd;
typedef MatrixX2d¶
typedef Matrix< double , Dynamic, 2 > MatrixX2d;
typedef Matrix3Xd¶
typedef Matrix< double , 3 , Dynamic> Matrix3Xd;
typedef MatrixX3d¶
typedef Matrix< double , Dynamic, 3 > MatrixX3d;
typedef Matrix4Xd¶
typedef Matrix< double , 4 , Dynamic> Matrix4Xd;
typedef MatrixX4d¶
typedef Matrix< double , Dynamic, 4 > MatrixX4d;
typedef Matrix2cf¶
typedef Matrix< std::complex<float> , 2 , 2 > Matrix2cf;
typedef Vector2cf¶
typedef Matrix< std::complex<float> , 2 , 1> Vector2cf;
typedef RowVector2cf¶
typedef Matrix< std::complex<float> , 1, 2 > RowVector2cf;
typedef Matrix3cf¶
typedef Matrix< std::complex<float> , 3 , 3 > Matrix3cf;
typedef Vector3cf¶
typedef Matrix< std::complex<float> , 3 , 1> Vector3cf;
typedef RowVector3cf¶
typedef Matrix< std::complex<float> , 1, 3 > RowVector3cf;
typedef Matrix4cf¶
typedef Matrix< std::complex<float> , 4 , 4 > Matrix4cf;
typedef Vector4cf¶
typedef Matrix< std::complex<float> , 4 , 1> Vector4cf;
typedef RowVector4cf¶
typedef Matrix< std::complex<float> , 1, 4 > RowVector4cf;
typedef MatrixXcf¶
typedef Matrix< std::complex<float> , Dynamic , Dynamic > MatrixXcf;
typedef VectorXcf¶
typedef Matrix< std::complex<float> , Dynamic , 1> VectorXcf;
typedef RowVectorXcf¶
typedef Matrix< std::complex<float> , 1, Dynamic > RowVectorXcf;
typedef Matrix2Xcf¶
typedef Matrix< std::complex<float> , 2 , Dynamic> Matrix2Xcf;
typedef MatrixX2cf¶
typedef Matrix< std::complex<float> , Dynamic, 2 > MatrixX2cf;
typedef Matrix3Xcf¶
typedef Matrix< std::complex<float> , 3 , Dynamic> Matrix3Xcf;
typedef MatrixX3cf¶
typedef Matrix< std::complex<float> , Dynamic, 3 > MatrixX3cf;
typedef Matrix4Xcf¶
typedef Matrix< std::complex<float> , 4 , Dynamic> Matrix4Xcf;
typedef MatrixX4cf¶
typedef Matrix< std::complex<float> , Dynamic, 4 > MatrixX4cf;
typedef Matrix2cd¶
typedef Matrix< std::complex<double> , 2 , 2 > Matrix2cd;
typedef Vector2cd¶
typedef Matrix< std::complex<double> , 2 , 1> Vector2cd;
typedef RowVector2cd¶
typedef Matrix< std::complex<double> , 1, 2 > RowVector2cd;
typedef Matrix3cd¶
typedef Matrix< std::complex<double> , 3 , 3 > Matrix3cd;
typedef Vector3cd¶
typedef Matrix< std::complex<double> , 3 , 1> Vector3cd;
typedef RowVector3cd¶
typedef Matrix< std::complex<double> , 1, 3 > RowVector3cd;
typedef Matrix4cd¶
typedef Matrix< std::complex<double> , 4 , 4 > Matrix4cd;
typedef Vector4cd¶
typedef Matrix< std::complex<double> , 4 , 1> Vector4cd;
typedef RowVector4cd¶
typedef Matrix< std::complex<double> , 1, 4 > RowVector4cd;
typedef MatrixXcd¶
typedef Matrix< std::complex<double> , Dynamic , Dynamic > MatrixXcd;
typedef VectorXcd¶
typedef Matrix< std::complex<double> , Dynamic , 1> VectorXcd;
typedef RowVectorXcd¶
typedef Matrix< std::complex<double> , 1, Dynamic > RowVectorXcd;
typedef Matrix2Xcd¶
typedef Matrix< std::complex<double> , 2 , Dynamic> Matrix2Xcd;
typedef MatrixX2cd¶
typedef Matrix< std::complex<double> , Dynamic, 2 > MatrixX2cd;
typedef Matrix3Xcd¶
typedef Matrix< std::complex<double> , 3 , Dynamic> Matrix3Xcd;
typedef MatrixX3cd¶
typedef Matrix< std::complex<double> , Dynamic, 3 > MatrixX3cd;
typedef Matrix4Xcd¶
typedef Matrix< std::complex<double> , 4 , Dynamic> Matrix4Xcd;
typedef MatrixX4cd¶
typedef Matrix< std::complex<double> , Dynamic, 4 > MatrixX4cd;
typedef DenseIndex¶
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
typedef Index¶
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index;
The Index type as used for the API.
See: \blank TopicPreprocessorDirectives, StorageIndex.
To change this, #define
the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE
.
typedef dcomplex¶
typedef std::complex<double> dcomplex;
typedef scomplex¶
typedef std::complex<float> scomplex;
typedef BlasIndex¶
typedef int BlasIndex;
typedef AlignedBox1i¶
typedef AlignedBox< int , 1 > AlignedBox1i;
typedef AlignedBox2i¶
typedef AlignedBox< int , 2 > AlignedBox2i;
typedef AlignedBox3i¶
typedef AlignedBox< int , 3 > AlignedBox3i;
typedef AlignedBox4i¶
typedef AlignedBox< int , 4 > AlignedBox4i;
typedef AlignedBoxXi¶
typedef AlignedBox< int , Dynamic > AlignedBoxXi;
typedef AlignedBox1f¶
typedef AlignedBox< float , 1 > AlignedBox1f;
typedef AlignedBox2f¶
typedef AlignedBox< float , 2 > AlignedBox2f;
typedef AlignedBox3f¶
typedef AlignedBox< float , 3 > AlignedBox3f;
typedef AlignedBox4f¶
typedef AlignedBox< float , 4 > AlignedBox4f;
typedef AlignedBoxXf¶
typedef AlignedBox< float , Dynamic > AlignedBoxXf;
typedef AlignedBox1d¶
typedef AlignedBox< double , 1 > AlignedBox1d;
typedef AlignedBox2d¶
typedef AlignedBox< double , 2 > AlignedBox2d;
typedef AlignedBox3d¶
typedef AlignedBox< double , 3 > AlignedBox3d;
typedef AlignedBox4d¶
typedef AlignedBox< double , 4 > AlignedBox4d;
typedef AlignedBoxXd¶
typedef AlignedBox< double , Dynamic > AlignedBoxXd;
typedef AngleAxisf¶
typedef AngleAxis<float> AngleAxisf;
single precision angle-axis type
typedef AngleAxisd¶
typedef AngleAxis<double> AngleAxisd;
double precision angle-axis type
typedef Quaternionf¶
typedef Quaternion<float> Quaternionf;
single precision quaternion type
typedef Quaterniond¶
typedef Quaternion<double> Quaterniond;
double precision quaternion type
typedef QuaternionMapf¶
typedef Map<Quaternion<float>, 0> QuaternionMapf;
Map an unaligned array of single precision scalars as a quaternion
typedef QuaternionMapd¶
typedef Map<Quaternion<double>, 0> QuaternionMapd;
Map an unaligned array of double precision scalars as a quaternion
typedef QuaternionMapAlignedf¶
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
Map a 16-byte aligned array of single precision scalars as a quaternion
typedef QuaternionMapAlignedd¶
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
Map a 16-byte aligned array of double precision scalars as a quaternion
typedef Rotation2Df¶
typedef Rotation2D<float> Rotation2Df;
single precision 2D rotation type
typedef Rotation2Dd¶
typedef Rotation2D<double> Rotation2Dd;
double precision 2D rotation type
typedef AlignedScaling2f¶
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
typedef AlignedScaling2d¶
typedef DiagonalMatrix<double,2> AlignedScaling2d;
typedef AlignedScaling3f¶
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
typedef AlignedScaling3d¶
typedef DiagonalMatrix<double,3> AlignedScaling3d;
typedef Isometry2f¶
typedef Transform<float,2,Isometry> Isometry2f;
typedef Isometry3f¶
typedef Transform<float,3,Isometry> Isometry3f;
typedef Isometry2d¶
typedef Transform<double,2,Isometry> Isometry2d;
typedef Isometry3d¶
typedef Transform<double,3,Isometry> Isometry3d;
typedef Affine2f¶
typedef Transform<float,2,Affine> Affine2f;
typedef Affine3f¶
typedef Transform<float,3,Affine> Affine3f;
typedef Affine2d¶
typedef Transform<double,2,Affine> Affine2d;
typedef Affine3d¶
typedef Transform<double,3,Affine> Affine3d;
typedef AffineCompact2f¶
typedef Transform<float,2,AffineCompact> AffineCompact2f;
typedef AffineCompact3f¶
typedef Transform<float,3,AffineCompact> AffineCompact3f;
typedef AffineCompact2d¶
typedef Transform<double,2,AffineCompact> AffineCompact2d;
typedef AffineCompact3d¶
typedef Transform<double,3,AffineCompact> AffineCompact3d;
typedef Projective2f¶
typedef Transform<float,2,Projective> Projective2f;
typedef Projective3f¶
typedef Transform<float,3,Projective> Projective3f;
typedef Projective2d¶
typedef Transform<double,2,Projective> Projective2d;
typedef Projective3d¶
typedef Transform<double,3,Projective> Projective3d;
typedef Translation2f¶
typedef Translation<float, 2> Translation2f;
typedef Translation2d¶
typedef Translation<double,2> Translation2d;
typedef Translation3f¶
typedef Translation<float, 3> Translation3f;
typedef Translation3d¶
typedef Translation<double,3> Translation3d;
Functions Documentation¶
function viewAsCholmod¶
template <typename _Scalar ,
int _Options,
typename _StorageIndex >
cholmod_sparse viewAsCholmod(
Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > > mat
)
Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object. Note that the data are shared.
function viewAsCholmod¶
template <typename _Scalar ,
int _Options,
typename _Index >
const cholmod_sparse viewAsCholmod(
const SparseMatrix< _Scalar, _Options, _Index > & mat
)
function viewAsCholmod¶
template <typename _Scalar ,
int _Options,
typename _Index >
const cholmod_sparse viewAsCholmod(
const SparseVector< _Scalar, _Options, _Index > & mat
)
function viewAsCholmod¶
template <typename _Scalar ,
int _Options,
typename _Index ,
unsigned int UpLo>
cholmod_sparse viewAsCholmod(
const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > & mat
)
Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix. The data are not copied but shared.
function viewAsCholmod¶
template <typename Derived >
cholmod_dense viewAsCholmod(
MatrixBase< Derived > & mat
)
Returns a view of the Eigendense matrix mat as Cholmod dense matrix. The data are not copied but shared.
function viewAsEigen¶
template <typename Scalar ,
int Flags,
typename StorageIndex >
MappedSparseMatrix< Scalar, Flags, StorageIndex > viewAsEigen(
cholmod_sparse & cm
)
Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix. The data are not copied but shared.
function seqN¶
template <typename FirstType ,
typename SizeType ,
typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > seqN(
FirstType first,
SizeType size,
IncrType incr
)
See: seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType)
Return: an ArithmeticSequence starting at first, of length size, and increment incr
function seqN¶
template <typename FirstType ,
typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > seqN(
FirstType first,
SizeType size
)
See: seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType)
Return: an ArithmeticSequence starting at first, of length size, and unit increment
function seq¶
template <typename FirstType ,
typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type seq(
FirstType f,
LastType l
)
function seq¶
template <typename FirstTypeDerived ,
typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq(
const symbolic::BaseExpr< FirstTypeDerived > & f,
LastType l
)
function seq¶
template <typename FirstType ,
typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq(
FirstType f,
const symbolic::BaseExpr< LastTypeDerived > & l
)
function seq¶
template <typename FirstTypeDerived ,
typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > seq(
const symbolic::BaseExpr< FirstTypeDerived > & f,
const symbolic::BaseExpr< LastTypeDerived > & l
)
function seq¶
template <typename FirstType ,
typename LastType ,
typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq(
FirstType f,
LastType l,
IncrType incr
)
function seq¶
template <typename FirstTypeDerived ,
typename LastType ,
typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq(
const symbolic::BaseExpr< FirstTypeDerived > & f,
LastType l,
IncrType incr
)
function seq¶
template <typename FirstType ,
typename LastTypeDerived ,
typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq(
FirstType f,
const symbolic::BaseExpr< LastTypeDerived > & l,
IncrType incr
)
function seq¶
template <typename FirstTypeDerived ,
typename LastTypeDerived ,
typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > seq(
const symbolic::BaseExpr< FirstTypeDerived > & f,
const symbolic::BaseExpr< LastTypeDerived > & l,
IncrType incr
)
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived >(
real
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived >(
imag
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_conjugate_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_conjugate_op< typename Derived::Scalar >, const Derived >(
conj
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_inverse_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_inverse_op< typename Derived::Scalar >, const Derived >(
inverse
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_sin_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sin_op< typename Derived::Scalar >, const Derived >(
sin
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_cos_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cos_op< typename Derived::Scalar >, const Derived >(
cos
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_tan_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_tan_op< typename Derived::Scalar >, const Derived >(
tan
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_atan_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_atan_op< typename Derived::Scalar >, const Derived >(
atan
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_asin_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_asin_op< typename Derived::Scalar >, const Derived >(
asin
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_acos_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_acos_op< typename Derived::Scalar >, const Derived >(
acos
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_sinh_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sinh_op< typename Derived::Scalar >, const Derived >(
sinh
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_cosh_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cosh_op< typename Derived::Scalar >, const Derived >(
cosh
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_tanh_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_tanh_op< typename Derived::Scalar >, const Derived >(
tanh
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_logistic_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_logistic_op< typename Derived::Scalar >, const Derived >(
logistic
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_lgamma_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_lgamma_op< typename Derived::Scalar >, const Derived >(
lgamma
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_digamma_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_digamma_op< typename Derived::Scalar >, const Derived >(
digamma
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_erf_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_erf_op< typename Derived::Scalar >, const Derived >(
erf
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_erfc_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_erfc_op< typename Derived::Scalar >, const Derived >(
erfc
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_ndtri_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_ndtri_op< typename Derived::Scalar >, const Derived >(
ndtri
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_exp_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_exp_op< typename Derived::Scalar >, const Derived >(
exp
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_expm1_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_expm1_op< typename Derived::Scalar >, const Derived >(
expm1
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_log_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log_op< typename Derived::Scalar >, const Derived >(
log
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_log1p_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log1p_op< typename Derived::Scalar >, const Derived >(
log1p
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_log10_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log10_op< typename Derived::Scalar >, const Derived >(
log10
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_log2_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log2_op< typename Derived::Scalar >, const Derived >(
log2
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived >(
abs
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs2_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs2_op< typename Derived::Scalar >, const Derived >(
abs2
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived >(
arg
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived >(
sqrt
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_rsqrt_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_rsqrt_op< typename Derived::Scalar >, const Derived >(
rsqrt
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_square_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_square_op< typename Derived::Scalar >, const Derived >(
square
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_cube_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cube_op< typename Derived::Scalar >, const Derived >(
cube
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_rint_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_rint_op< typename Derived::Scalar >, const Derived >(
rint
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_round_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_round_op< typename Derived::Scalar >, const Derived >(
round
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_floor_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_floor_op< typename Derived::Scalar >, const Derived >(
floor
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_ceil_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_ceil_op< typename Derived::Scalar >, const Derived >(
ceil
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_isnan_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isnan_op< typename Derived::Scalar >, const Derived >(
isnan
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_isinf_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isinf_op< typename Derived::Scalar >, const Derived >(
isinf
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_isfinite_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isfinite_op< typename Derived::Scalar >, const Derived >(
isfinite
) const
function Eigen::CwiseUnaryOp< Eigen::internal::scalar_sign_op< typename Derived::Scalar >, const Derived >¶
template <typename Derived >
inline const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sign_op< typename Derived::Scalar >, const Derived >(
sign
) const
function operator*¶
template <typename MatrixDerived ,
typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > operator*(
const MatrixBase< MatrixDerived > & matrix,
const PermutationBase< PermutationDerived > & permutation
)
Return: the matrix with the permutation applied to the columns.
function operator*¶
template <typename PermutationDerived ,
typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > operator*(
const PermutationBase< PermutationDerived > & permutation,
const MatrixBase< MatrixDerived > & matrix
)
Return: the matrix with the permutation applied to the rows.
function l1CacheSize¶
inline std::ptrdiff_t l1CacheSize()
See: setCpuCacheSize
Return: the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
function l2CacheSize¶
inline std::ptrdiff_t l2CacheSize()
See: setCpuCacheSize
Return: the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
function l3CacheSize¶
inline std::ptrdiff_t l3CacheSize()
See: setCpuCacheSize
Return: the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete rs.
function setCpuCacheSizes¶
inline void setCpuCacheSizes(
std::ptrdiff_t l1,
std::ptrdiff_t l2,
std::ptrdiff_t l3
)
See: computeProductBlockingSizes
Set the cpu L1 and L2 cache sizes (in bytes). These values are use to adjust the size of the blocks for the algorithms working per blocks.
function initParallel¶
inline void initParallel()
Must be call first when calling Eigen from multiple threads
function nbThreads¶
inline int nbThreads()
See: setNbThreads
Return: the max number of threads reserved for Eigen
function setNbThreads¶
inline void setNbThreads(
int v
)
See: nbThreads
Sets the max number of threads reserved for Eigen
function operator*¶
template <typename MatrixDerived ,
typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > operator*(
const MatrixBase< MatrixDerived > & matrix,
const TranspositionsBase< TranspositionsDerived > & transpositions
)
Return: the matrix with the transpositions applied to the columns.
function operator*¶
template <typename TranspositionsDerived ,
typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > operator*(
const TranspositionsBase< TranspositionsDerived > & transpositions,
const MatrixBase< MatrixDerived > & matrix
)
Return: the matrix with the transpositions applied to the rows.
function SimdInstructionSetsInUse¶
static inline const char * SimdInstructionSetsInUse(
void
)
function lastp1¶
static const symbolic::AddExpr< symbolic::SymbolExpr< internal::symbolic_last_tag >, symbolic::ValueExpr< Eigen::internal::FixedInt< 1 > > > lastp1(
last+fix< 1 > ()
)
function fix¶
template <int N>
inline internal::FixedInt< N > fix()
function fix¶
template <int N,
typename T >
inline internal::VariableAndFixedInt< N > fix(
T val
)
function Scaling¶
inline UniformScaling< float > Scaling(
float s
)
Constructs a uniform scaling from scale factor s
function Scaling¶
inline UniformScaling< double > Scaling(
double s
)
Constructs a uniform scaling from scale factor s
function Scaling¶
template <typename RealScalar >
inline UniformScaling< std::complex< RealScalar > > Scaling(
const std::complex< RealScalar > & s
)
Constructs a uniform scaling from scale factor s
function Scaling¶
template <typename Scalar >
inline DiagonalMatrix< Scalar, 2 > Scaling(
const Scalar & sx,
const Scalar & sy
)
Constructs a 2D axis aligned scaling
function Scaling¶
template <typename Scalar >
inline DiagonalMatrix< Scalar, 3 > Scaling(
const Scalar & sx,
const Scalar & sy,
const Scalar & sz
)
Constructs a 3D axis aligned scaling
function Scaling¶
template <typename Derived >
inline const DiagonalWrapper< const Derived > Scaling(
const MatrixBase< Derived > & coeffs
)
Constructs an axis aligned scaling expression from vector expression coeffs This is an alias for coeffs.asDiagonal()
function umeyama¶
template <typename Derived ,
typename OtherDerived >
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(
const MatrixBase< Derived > & src,
const MatrixBase< OtherDerived > & dst,
bool with_scaling =true
)
Returns the transformation between two point sets.
Parameters:
- src Source points \( \mathbf{x} = \left( x_1, \hdots, x_n \right) \).
- dst Destination points \( \mathbf{y} = \left( y_1, \hdots, y_n \right) \).
- with_scaling Sets \( c=1 \) when
false
is passed.
Return: The homogeneous transformation minimizing the residual above. This transformation is always returned as an Eigen::Matrix.
Todo: Should the return type of umeyama() become a Transform?
\geometry_module
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters \( c, \mathbf{R}, \) and \( \mathbf{t} \) such that is minimized.
The algorithm is based on the analysis of the covariance matrix \( \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \) of the input point sets \( \mathbf{x} \) and \( \mathbf{y} \) where \(d\) is corresponding to the dimension (which is typically small). The analysis is involving the SVD having a complexity of \(O(d^3)\) though the actual computational effort lies in the covariance matrix computation which has an asymptotic lower bound of \(O(dm)\) when the input point sets have dimension \(d \times m\).
Currently the method is working only for floating point matrices.
function operator*¶
template <typename OtherDerived ,
typename VectorsType ,
typename CoeffsType ,
int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type operator*(
const MatrixBase< OtherDerived > & other,
const HouseholderSequence< VectorsType, CoeffsType, Side > & h
)
Computes the product of a matrix with a Householder sequence.
Parameters:
- other Matrix being multiplied.
- h HouseholderSequence being multiplied.
Return: Expression object representing the product.
This function computes \( MH \) where \( M \) is the matrix other
and \( H \) is the Householder sequence represented by h
.
function householderSequence¶
template <typename VectorsType ,
typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType > householderSequence(
const VectorsType & v,
const CoeffsType & h
)
Convenience function for constructing a Householder sequence.
Return: A HouseholderSequence constructed from the specified arguments.
function rightHouseholderSequence¶
template <typename VectorsType ,
typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType, OnTheRight > rightHouseholderSequence(
const VectorsType & v,
const CoeffsType & h
)
Convenience function for constructing a Householder sequence.
Return: A HouseholderSequence constructed from the specified arguments.
This function differs from householderSequence() in that the template argument OnTheSide
of the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.
function klu_solve¶
inline int klu_solve(
klu_symbolic * Symbolic,
klu_numeric * Numeric,
Index ldim,
Index nrhs,
double B[],
klu_common * Common,
double
)
A sparse LU factorization and solver based on KLU.
Template Parameters:
- _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
See: TutorialSparseSolverConcept, class UmfPackLU, class SparseLU
Warning: The input matrix A should be in a compressed and column-major form. Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
This class allows to solve for A.X = B sparse linear problems via a LU factorization using the KLU library. The sparse matrix A must be squared and full rank. The vectors or matrices X and B can be either dense or sparse.
\implsparsesolverconcept
function klu_solve¶
inline int klu_solve(
klu_symbolic * Symbolic,
klu_numeric * Numeric,
Index ldim,
Index nrhs,
std::complex< double > B[],
klu_common * Common,
std::complex< double >
)
function klu_tsolve¶
inline int klu_tsolve(
klu_symbolic * Symbolic,
klu_numeric * Numeric,
Index ldim,
Index nrhs,
double B[],
klu_common * Common,
double
)
function klu_tsolve¶
inline int klu_tsolve(
klu_symbolic * Symbolic,
klu_numeric * Numeric,
Index ldim,
Index nrhs,
std::complex< double > B[],
klu_common * Common,
std::complex< double >
)
function klu_factor¶
inline klu_numeric * klu_factor(
int Ap[],
int Ai[],
double Ax[],
klu_symbolic * Symbolic,
klu_common * Common,
double
)
function klu_factor¶
inline klu_numeric * klu_factor(
int Ap[],
int Ai[],
std::complex< double > Ax[],
klu_symbolic * Symbolic,
klu_common * Common,
std::complex< double >
)
function operator+¶
template <typename DenseDerived ,
typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator+(
const MatrixBase< DenseDerived > & a,
const SparseMatrixBase< SparseDerived > & b
)
function operator+¶
template <typename SparseDerived ,
typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator+(
const SparseMatrixBase< SparseDerived > & a,
const MatrixBase< DenseDerived > & b
)
function operator-¶
template <typename DenseDerived ,
typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator-(
const MatrixBase< DenseDerived > & a,
const SparseMatrixBase< SparseDerived > & b
)
function operator-¶
template <typename SparseDerived ,
typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator-(
const SparseMatrixBase< SparseDerived > & a,
const MatrixBase< DenseDerived > & b
)
function operator*¶
template <typename SparseDerived ,
typename PermDerived >
inline const Product< SparseDerived, PermDerived, AliasFreeProduct > operator*(
const SparseMatrixBase< SparseDerived > & matrix,
const PermutationBase< PermDerived > & perm
)
Return: the matrix with the permutation applied to the columns
function operator*¶
template <typename SparseDerived ,
typename PermDerived >
inline const Product< PermDerived, SparseDerived, AliasFreeProduct > operator*(
const PermutationBase< PermDerived > & perm,
const SparseMatrixBase< SparseDerived > & matrix
)
Return: the matrix with the permutation applied to the rows
function operator*¶
template <typename SparseDerived ,
typename PermutationType >
inline const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > operator*(
const SparseMatrixBase< SparseDerived > & matrix,
const InverseImpl< PermutationType, PermutationStorage > & tperm
)
Return: the matrix with the inverse permutation applied to the columns.
function operator*¶
template <typename SparseDerived ,
typename PermutationType >
inline const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > operator*(
const InverseImpl< PermutationType, PermutationStorage > & tperm,
const SparseMatrixBase< SparseDerived > & matrix
)
Return: the matrix with the inverse permutation applied to the rows.
function sgssvx¶
void sgssvx(
superlu_options_t * ,
SuperMatrix * ,
int * ,
int * ,
int * ,
char * ,
float * ,
float * ,
SuperMatrix * ,
SuperMatrix * ,
void * ,
int ,
SuperMatrix * ,
SuperMatrix * ,
float * ,
float * ,
float * ,
float * ,
mem_usage_t * ,
SuperLUStat_t * ,
int *
)
function SuperLU_gssvx¶
inline float SuperLU_gssvx(
superlu_options_t * options,
SuperMatrix * A,
int * perm_c,
int * perm_r,
int * etree,
char * equed,
float * R,
float * C,
SuperMatrix * L,
SuperMatrix * U,
void * work,
int lwork,
SuperMatrix * B,
SuperMatrix * X,
float * recip_pivot_growth,
float * rcond,
float * ferr,
float * berr,
SuperLUStat_t * stats,
int * info,
float
)
function cgssvx¶
void cgssvx(
superlu_options_t * ,
SuperMatrix * ,
int * ,
int * ,
int * ,
char * ,
float * ,
float * ,
SuperMatrix * ,
SuperMatrix * ,
void * ,
int ,
SuperMatrix * ,
SuperMatrix * ,
float * ,
float * ,
float * ,
float * ,
mem_usage_t * ,
SuperLUStat_t * ,
int *
)
function SuperLU_gssvx¶
inline float SuperLU_gssvx(
superlu_options_t * options,
SuperMatrix * A,
int * perm_c,
int * perm_r,
int * etree,
char * equed,
float * R,
float * C,
SuperMatrix * L,
SuperMatrix * U,
void * work,
int lwork,
SuperMatrix * B,
SuperMatrix * X,
float * recip_pivot_growth,
float * rcond,
float * ferr,
float * berr,
SuperLUStat_t * stats,
int * info,
std::complex< float >
)
function dgssvx¶
void dgssvx(
superlu_options_t * ,
SuperMatrix * ,
int * ,
int * ,
int * ,
char * ,
double * ,
double * ,
SuperMatrix * ,
SuperMatrix * ,
void * ,
int ,
SuperMatrix * ,
SuperMatrix * ,
double * ,
double * ,
double * ,
double * ,
mem_usage_t * ,
SuperLUStat_t * ,
int *
)
function SuperLU_gssvx¶
inline float SuperLU_gssvx(
superlu_options_t * options,
SuperMatrix * A,
int * perm_c,
int * perm_r,
int * etree,
char * equed,
double * R,
double * C,
SuperMatrix * L,
SuperMatrix * U,
void * work,
int lwork,
SuperMatrix * B,
SuperMatrix * X,
double * recip_pivot_growth,
double * rcond,
double * ferr,
double * berr,
SuperLUStat_t * stats,
int * info,
double
)
function zgssvx¶
void zgssvx(
superlu_options_t * ,
SuperMatrix * ,
int * ,
int * ,
int * ,
char * ,
double * ,
double * ,
SuperMatrix * ,
SuperMatrix * ,
void * ,
int ,
SuperMatrix * ,
SuperMatrix * ,
double * ,
double * ,
double * ,
double * ,
mem_usage_t * ,
SuperLUStat_t * ,
int *
)
function SuperLU_gssvx¶
inline float SuperLU_gssvx(
superlu_options_t * options,
SuperMatrix * A,
int * perm_c,
int * perm_r,
int * etree,
char * equed,
double * R,
double * C,
SuperMatrix * L,
SuperMatrix * U,
void * work,
int lwork,
SuperMatrix * B,
SuperMatrix * X,
double * recip_pivot_growth,
double * rcond,
double * ferr,
double * berr,
SuperLUStat_t * stats,
int * info,
std::complex< double >
)
function umfpack_defaults¶
inline void umfpack_defaults(
double control[UMFPACK_CONTROL],
double ,
int
)
function umfpack_defaults¶
inline void umfpack_defaults(
double control[UMFPACK_CONTROL],
std::complex< double > ,
int
)
function umfpack_defaults¶
inline void umfpack_defaults(
double control[UMFPACK_CONTROL],
double ,
SuiteSparse_long
)
function umfpack_defaults¶
inline void umfpack_defaults(
double control[UMFPACK_CONTROL],
std::complex< double > ,
SuiteSparse_long
)
function umfpack_report_info¶
inline void umfpack_report_info(
double control[UMFPACK_CONTROL],
double info[UMFPACK_INFO],
double ,
int
)
function umfpack_report_info¶
inline void umfpack_report_info(
double control[UMFPACK_CONTROL],
double info[UMFPACK_INFO],
std::complex< double > ,
int
)
function umfpack_report_info¶
inline void umfpack_report_info(
double control[UMFPACK_CONTROL],
double info[UMFPACK_INFO],
double ,
SuiteSparse_long
)
function umfpack_report_info¶
inline void umfpack_report_info(
double control[UMFPACK_CONTROL],
double info[UMFPACK_INFO],
std::complex< double > ,
SuiteSparse_long
)
function umfpack_report_status¶
inline void umfpack_report_status(
double control[UMFPACK_CONTROL],
int status,
double ,
int
)
function umfpack_report_status¶
inline void umfpack_report_status(
double control[UMFPACK_CONTROL],
int status,
std::complex< double > ,
int
)
function umfpack_report_status¶
inline void umfpack_report_status(
double control[UMFPACK_CONTROL],
int status,
double ,
SuiteSparse_long
)
function umfpack_report_status¶
inline void umfpack_report_status(
double control[UMFPACK_CONTROL],
int status,
std::complex< double > ,
SuiteSparse_long
)
function umfpack_report_control¶
inline void umfpack_report_control(
double control[UMFPACK_CONTROL],
double ,
int
)
function umfpack_report_control¶
inline void umfpack_report_control(
double control[UMFPACK_CONTROL],
std::complex< double > ,
int
)
function umfpack_report_control¶
inline void umfpack_report_control(
double control[UMFPACK_CONTROL],
double ,
SuiteSparse_long
)
function umfpack_report_control¶
inline void umfpack_report_control(
double control[UMFPACK_CONTROL],
std::complex< double > ,
SuiteSparse_long
)
function umfpack_free_numeric¶
inline void umfpack_free_numeric(
void ** Numeric,
double ,
int
)
function umfpack_free_numeric¶
inline void umfpack_free_numeric(
void ** Numeric,
std::complex< double > ,
int
)
function umfpack_free_numeric¶
inline void umfpack_free_numeric(
void ** Numeric,
double ,
SuiteSparse_long
)
function umfpack_free_numeric¶
inline void umfpack_free_numeric(
void ** Numeric,
std::complex< double > ,
SuiteSparse_long
)
function umfpack_free_symbolic¶
inline void umfpack_free_symbolic(
void ** Symbolic,
double ,
int
)
function umfpack_free_symbolic¶
inline void umfpack_free_symbolic(
void ** Symbolic,
std::complex< double > ,
int
)
function umfpack_free_symbolic¶
inline void umfpack_free_symbolic(
void ** Symbolic,
double ,
SuiteSparse_long
)
function umfpack_free_symbolic¶
inline void umfpack_free_symbolic(
void ** Symbolic,
std::complex< double > ,
SuiteSparse_long
)
function umfpack_symbolic¶
inline int umfpack_symbolic(
int n_row,
int n_col,
const int Ap[],
const int Ai[],
const double Ax[],
void ** Symbolic,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_symbolic¶
inline int umfpack_symbolic(
int n_row,
int n_col,
const int Ap[],
const int Ai[],
const std::complex< double > Ax[],
void ** Symbolic,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_symbolic¶
inline SuiteSparse_long umfpack_symbolic(
SuiteSparse_long n_row,
SuiteSparse_long n_col,
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const double Ax[],
void ** Symbolic,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_symbolic¶
inline SuiteSparse_long umfpack_symbolic(
SuiteSparse_long n_row,
SuiteSparse_long n_col,
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const std::complex< double > Ax[],
void ** Symbolic,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_numeric¶
inline int umfpack_numeric(
const int Ap[],
const int Ai[],
const double Ax[],
void * Symbolic,
void ** Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_numeric¶
inline int umfpack_numeric(
const int Ap[],
const int Ai[],
const std::complex< double > Ax[],
void * Symbolic,
void ** Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_numeric¶
inline SuiteSparse_long umfpack_numeric(
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const double Ax[],
void * Symbolic,
void ** Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_numeric¶
inline SuiteSparse_long umfpack_numeric(
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const std::complex< double > Ax[],
void * Symbolic,
void ** Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_solve¶
inline int umfpack_solve(
int sys,
const int Ap[],
const int Ai[],
const double Ax[],
double X[],
const double B[],
void * Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_solve¶
inline int umfpack_solve(
int sys,
const int Ap[],
const int Ai[],
const std::complex< double > Ax[],
std::complex< double > X[],
const std::complex< double > B[],
void * Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_solve¶
inline SuiteSparse_long umfpack_solve(
int sys,
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const double Ax[],
double X[],
const double B[],
void * Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_solve¶
inline SuiteSparse_long umfpack_solve(
int sys,
const SuiteSparse_long Ap[],
const SuiteSparse_long Ai[],
const std::complex< double > Ax[],
std::complex< double > X[],
const std::complex< double > B[],
void * Numeric,
const double Control[UMFPACK_CONTROL],
double Info[UMFPACK_INFO]
)
function umfpack_get_lunz¶
inline int umfpack_get_lunz(
int * lnz,
int * unz,
int * n_row,
int * n_col,
int * nz_udiag,
void * Numeric,
double
)
function umfpack_get_lunz¶
inline int umfpack_get_lunz(
int * lnz,
int * unz,
int * n_row,
int * n_col,
int * nz_udiag,
void * Numeric,
std::complex< double >
)
function umfpack_get_lunz¶
inline SuiteSparse_long umfpack_get_lunz(
SuiteSparse_long * lnz,
SuiteSparse_long * unz,
SuiteSparse_long * n_row,
SuiteSparse_long * n_col,
SuiteSparse_long * nz_udiag,
void * Numeric,
double
)
function umfpack_get_lunz¶
inline SuiteSparse_long umfpack_get_lunz(
SuiteSparse_long * lnz,
SuiteSparse_long * unz,
SuiteSparse_long * n_row,
SuiteSparse_long * n_col,
SuiteSparse_long * nz_udiag,
void * Numeric,
std::complex< double >
)
function umfpack_get_numeric¶
inline int umfpack_get_numeric(
int Lp[],
int Lj[],
double Lx[],
int Up[],
int Ui[],
double Ux[],
int P[],
int Q[],
double Dx[],
int * do_recip,
double Rs[],
void * Numeric
)
function umfpack_get_numeric¶
inline int umfpack_get_numeric(
int Lp[],
int Lj[],
std::complex< double > Lx[],
int Up[],
int Ui[],
std::complex< double > Ux[],
int P[],
int Q[],
std::complex< double > Dx[],
int * do_recip,
double Rs[],
void * Numeric
)
function umfpack_get_numeric¶
inline SuiteSparse_long umfpack_get_numeric(
SuiteSparse_long Lp[],
SuiteSparse_long Lj[],
double Lx[],
SuiteSparse_long Up[],
SuiteSparse_long Ui[],
double Ux[],
SuiteSparse_long P[],
SuiteSparse_long Q[],
double Dx[],
SuiteSparse_long * do_recip,
double Rs[],
void * Numeric
)
function umfpack_get_numeric¶
inline SuiteSparse_long umfpack_get_numeric(
SuiteSparse_long Lp[],
SuiteSparse_long Lj[],
std::complex< double > Lx[],
SuiteSparse_long Up[],
SuiteSparse_long Ui[],
std::complex< double > Ux[],
SuiteSparse_long P[],
SuiteSparse_long Q[],
std::complex< double > Dx[],
SuiteSparse_long * do_recip,
double Rs[],
void * Numeric
)
function umfpack_get_determinant¶
inline int umfpack_get_determinant(
double * Mx,
double * Ex,
void * NumericHandle,
double User_Info[UMFPACK_INFO],
int
)
function umfpack_get_determinant¶
inline int umfpack_get_determinant(
std::complex< double > * Mx,
double * Ex,
void * NumericHandle,
double User_Info[UMFPACK_INFO],
int
)
function umfpack_get_determinant¶
inline SuiteSparse_long umfpack_get_determinant(
double * Mx,
double * Ex,
void * NumericHandle,
double User_Info[UMFPACK_INFO],
SuiteSparse_long
)
function umfpack_get_determinant¶
inline SuiteSparse_long umfpack_get_determinant(
std::complex< double > * Mx,
double * Ex,
void * NumericHandle,
double User_Info[UMFPACK_INFO],
SuiteSparse_long
)
Attributes Documentation¶
variable exponents¶
EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & exponents {
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar;
variable Dynamic¶
const int Dynamic = -1;
This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.
variable DynamicIndex¶
const int DynamicIndex = 0xffffff;
This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.
variable UndefinedIncr¶
const int UndefinedIncr = 0xfffffe;
This value means that the increment to go from one value to another in a sequence is not constant for each step.
variable Infinity¶
const int Infinity = -1;
This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm
variable HugeCost¶
const int HugeCost = 10000;
This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.
This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow.
variable RowMajorBit¶
const unsigned int RowMajorBit = 0x1;
See: \blank TopicStorageOrders
for a matrix, this means that the storage order is row-major. If this bit is not set, the storage order is column-major. For an expression, this determines the storage order of the matrix created by evaluation of that expression.
variable EvalBeforeNestingBit¶
const unsigned int EvalBeforeNestingBit = 0x2;
means the expression should be evaluated by the calling expression
variable EvalBeforeAssigningBit¶
EIGEN_DEPRECATED const unsigned int EvalBeforeAssigningBit = 0x4;
Deprecated:
means the expression should be evaluated before any assignment
variable PacketAccessBit¶
const unsigned int PacketAccessBit = 0x8;
Note: This bit can be set regardless of whether vectorization is actually enabled. To check for actual vectorizability, see ActualPacketAccessBit.
Short version: means the expression might be vectorized
Long version: means that the coefficients can be handled by packets and start at a memory location whose alignment meets the requirements of the present CPU architecture for optimized packet access. In the fixed-size case, there is the additional condition that it be possible to access all the coefficients by packets (this implies the requirement that the size be a multiple of 16 bytes, and that any nontrivial strides don't break the alignment). In the dynamic-size case, there is no such condition on the total size and strides, so it might not be possible to access all coeffs by packets.
variable ActualPacketAccessBit¶
const unsigned int ActualPacketAccessBit = 0x0;
variable LinearAccessBit¶
const unsigned int LinearAccessBit = 0x10;
Short version: means the expression can be seen as 1D vector.
Long version: means that one can access the coefficients of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These index-based access methods are guaranteed to not have to do any runtime computation of a (row, col)-pair from the index, so that it is guaranteed that whenever it is available, index-based access is at least as fast as (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit.
If both PacketAccessBit and LinearAccessBit are set, then the packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a lvalue expression.
Typically, all vector expressions have the LinearAccessBit, but there is one exception: Product expressions don't have it, because it would be troublesome for vectorization, even when the Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but not index-based packet access, so they don't have the LinearAccessBit.
variable LvalueBit¶
const unsigned int LvalueBit = 0x20;
Means the expression has a coeffRef() method, i.e. is writable as its individual coefficients are directly addressable. This rules out read-only expressions.
Note that DirectAccessBit and LvalueBit are mutually orthogonal, as there are examples of expression having one but note the other:
- writable expressions that don't have a very simple memory layout as a strided array, have LvalueBit but not DirectAccessBit
- Map-to-const expressions, for example Map
, have DirectAccessBit but not LvalueBit
Expressions having LvalueBit also have their coeff() method returning a const reference instead of returning a new value.
variable DirectAccessBit¶
const unsigned int DirectAccessBit = 0x40;
Means that the underlying array of coefficients can be directly accessed as a plain strided array. The memory layout of the array of coefficients must be exactly the natural one suggested by rows(), cols(), outerStride(), innerStride(), and the RowMajorBit. This rules out expressions such as Diagonal, whose coefficients, though referencable, do not have such a regular memory layout.
See the comment on LvalueBit for an explanation of how LvalueBit and DirectAccessBit are mutually orthogonal.
variable AlignedBit¶
EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80;
means the first coefficient packet is guaranteed to be aligned. An expression cannot have the AlignedBit without the PacketAccessBit flag. In other words, this means we are allow to perform an aligned packet access to the first element regardless of the expression kind:
expression.packet<Aligned>(0);
variable NestByRefBit¶
const unsigned int NestByRefBit = 0x100;
variable NoPreferredStorageOrderBit¶
const unsigned int NoPreferredStorageOrderBit = 0x200;
See: \blank RowMajorBit, TopicStorageOrders
for an expression, this means that the storage order can be either row-major or column-major. The precise choice will be decided at evaluation time or when combined with other expressions.
variable CompressedAccessBit¶
const unsigned int CompressedAccessBit = 0x400;
Means that the underlying coefficients can be accessed through pointers to the sparse (un)compressed storage format, that is, the expression provides:
inline const Scalar* valuePtr() const;
inline const Index* innerIndexPtr() const;
inline const Index* outerIndexPtr() const;
inline const Index* innerNonZeroPtr() const;
variable HereditaryBits¶
const unsigned int HereditaryBits = RowMajorBit
| EvalBeforeNestingBit;
variable last¶
static const symbolic::SymbolExpr< internal::symbolic_last_tag > last;
See: end
Can be used as a parameter to Eigen::seq and Eigen::seqN functions to symbolically reference the last element/row/columns of the underlying vector or matrix once passed to DenseBase::operator()(const RowIndices&, const ColIndices&).
This symbolic placeholder supports standard arithmetic operations.
A typical usage example would be:
using namespace Eigen;
using Eigen::last;
VectorXd v(n);
v(seq(2,last-2)).setOnes();
variable all¶
static const Eigen::internal::all_t all;
Can be used as a parameter to DenseBase::operator()(const RowIndices&, const ColIndices&) to index all rows or columns
variable AutoOrder¶
const int AutoOrder = 2;
variable CoherentAccessPattern¶
const int CoherentAccessPattern = 0x1;
variable InnerRandomAccessPattern¶
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
variable OuterRandomAccessPattern¶
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
variable RandomAccessPattern¶
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
Updated on 2023-11-29 at 18:22:17 +0000